Flow and noise prediction for tandem cylinder
Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 119-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results are presented of computations of aerodynamic characteristics and noise generated by the flow past tandem cylinders. The flow aerodynamics is modeled with the use of two hybrid RANS-LES approaches known as Improved Delayed Detached Eddy Simulation and Scale-Adaptive Simulation, while for the far-field noise prediction Ffowcs Williams and Hawkings method is used. Sensitivity of results of simulations to the span size of computational domain and to the order of approximation of the convective fluxes in the governing equations is analyzed, and comparison of numerical predictions with experimental data of NASA is carried out.
Keywords: tandem cylinders, turbulent flow, the noise in the far field, the hybrid RANS-LES method, Fox Williams and Hawking method.
@article{MM_2014_26_6_a7,
     author = {A. V. Garbaruk and P. R. Spalart and M. Kh. Strelets and M. L. Shur},
     title = {Flow and noise prediction for tandem cylinder},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--136},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_6_a7/}
}
TY  - JOUR
AU  - A. V. Garbaruk
AU  - P. R. Spalart
AU  - M. Kh. Strelets
AU  - M. L. Shur
TI  - Flow and noise prediction for tandem cylinder
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 119
EP  - 136
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_6_a7/
LA  - ru
ID  - MM_2014_26_6_a7
ER  - 
%0 Journal Article
%A A. V. Garbaruk
%A P. R. Spalart
%A M. Kh. Strelets
%A M. L. Shur
%T Flow and noise prediction for tandem cylinder
%J Matematičeskoe modelirovanie
%D 2014
%P 119-136
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_6_a7/
%G ru
%F MM_2014_26_6_a7
A. V. Garbaruk; P. R. Spalart; M. Kh. Strelets; M. L. Shur. Flow and noise prediction for tandem cylinder. Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 119-136. http://geodesic.mathdoc.fr/item/MM_2014_26_6_a7/

[1] Ffowcs Williams J. E., Hawkings D. L., “Sound generated by turbulence and surfaces in unsteady motion”, Philosophical Transactions of the Royal Society, A264:1151 (1969), 321–342 | Zbl

[2] http://www.cimne.com/websasp/valiant/

[3] http://cfd.mace.manchester.ac.uk/twiki/bin/view/ATAAC/

[4] https://info.aiaa.org/tac/ASG/FDTC/DG/BECAN_files_/BANCII.htm

[5] Shur M., Spalart P. R., Strelets M., Travin A., “A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities”, International Journal of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[6] Menter F. R., Egorov Y., A Scale-Adaptive Simulation Model using Two-Equation models, AIAA Paper 2005-1095

[7] https://info.aiaa.org/tac/ASG/FDTC/DG/Forms/AllItems.aspx?RootFolder=https

[8] Jenkins L. N., Khorrami M. R., Choudhari M. M., McGinley C. B., Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise, AIAA Paper 2005-2812

[9] Jenkins L. N., Neuhart D. H., McGinley C. B., Choudhari M. M., Khorrami M. R., Measurements of Unsteady Wake Interference Between Tandem Cylinders, AIAA Paper 2006-3202

[10] Lockard D. P., Khorrami M. R., Choudhari M. M., Hutcheson F. V., Brooks T. F., Stead D. J., Tandem Cylinder Noise Predictions, AIAA-2007-3450

[11] Neuhart D., Jenkins L., Choudhari M., Khorrami M., Measurements of the Flowfield Interaction Between Tandem Cylinders, AIAA Paper 2009-3275

[12] Lockard D. P., Summary of the tandem cylinder solutions from the Benchmark problems for Airframe Noise Computations-I Workshop, AIAA Paper 2011-353

[13] Schwamborn D., Strelets M., “ATAAC — An EU-Project Dedicated to Hybrid RANS/LES Methods”, Progress in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 117, 2012, 59–75 | DOI

[14] http://uriah.dedi.melbourne.co.uk/w/index.php/UFR_2-12

[15] Guillaume A. B., Freed D., Wessels M., Noelting S., Perot F., “Flow and noise predictions for the tandem cylinder aeroacoustic benchmark”, Physics of Fluids, 24:3 (2012), 1–25 | MR

[16] Weinmann M., Sandberg R. D., Doolan C. J., Flow and noise predictions for a tandem cylinder configuration using novel hybrid RANS/LES approaches, AIAA Paper 2010-3787

[17] Spalart P. R., Deck S., Shur M. L., Squires K. D., Strelets M. Kh., Travin A., “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theoretical and Computational Fluid Dynamics, 20 (2006), 81–195 | DOI

[18] Hirsch C., Numerical Computation of Internal and External Flows, Elsevier Science, 2007, 680 pp.

[19] Shur M. L., Spalart P. R., Strelets M. Kh., “Noise prediction for increasingly complex jets. Part I: Methods and tests”, International Journal of Aeroacoustics, 4:3–4 (2005), 213–246 | DOI

[20] Strelets M., Detached eddy simulation of massively separated flows, AIAA Paper 2001-0879

[21] Shur M., Strelets M., Travin A., “High-order implicit multi-block Navier–Stoks code: Ten-year experience of application to RANS/DES/LES/DNS of turbulence”, Proceedings of Overset grids $7^{\mathrm{th}}$ Symp. on Overset Composite Grids Solution Technology (2004, Huntington Beach, California)

[22] Haase W., Aupoix B., Bunge U., Schwamborn D. (eds.), FLOMANIA — A European Initiative on Flow Physics Modelling: Results of the European-Union funded project, 2002–2004, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 94, Springer, 2006, 433 pp. | DOI | Zbl

[23] Haase W., Braza M., Revell A. (eds.), DESider — A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004–2007, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 103, Springer, 2009, 454 pp. | DOI

[24] Roe P. L., “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes”, Journal of Computational Physics, 46 (1981), 357–378 | DOI | MR

[25] Travin A., Shur M., Strelets M., Spalart P. R., “Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows”, Advances in LES of Complex Flows, Kluwer Academic Publishers, New York, 2002, 239–254 | Zbl

[26] Spalart P. R., Shur M. L., “Variants of the Ffowcs Williams–Hawkings equation and their coupling with simulations of hot jets”, International Journal of Aeroacoustics, 8:5 (2009), 477–492 | DOI

[27] Spalart P. R., Young-Person's Guide to Detached-Eddy Simulation Grids, NASA/CR-2001-211032, 2001

[28] Curle N., “The Influence of Solid Boundaries upon Aerodynamic Sound”, Proc. Royal Soc. London A, 231 (1955), 505–514 | DOI | MR | Zbl

[29] Kato C., Iida A., Tanako Y., Fujita H., Ikegava M., Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake, AIAA Paper 93-145

[30] Seo J. H., Chang K. W., Moon Y. J., Aerodynamic noise prediction for long-span-bodies, AIAA Paper 2006-2573

[31] Bendat J. S., Piersol A. G., Engineering applications of correlation and spectral analysis — NY-Chichester–Brisbane–Toronto, Willey Sons, 1980, 458 pp. | Zbl

[32] Spalart P. R., Shur M. L., Strelets M. Kh., Travin A. K., Sensitivity of Landing-Gear Noise Predictions by Large-Eddy Simulation to Numerics and Resolution, AIAA Paper 2012-1174