On the three-stage version of stable dynamic model
Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 34-70

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a new model of the traffic assignment problem. This model joints the entropy model, flow decomposition and the Stable Dynamic model. All parameters in use have a direct physical meaning and interpretations. We show that this model reduces to a non-smooth convex optimization problem that admits natural primal-dual formulation. For completeness, we present and criticize the standard static traffic assignment models. In particular, we prove that the Beckmann model reduces to the Stable Dynamic Model as a result of some limiting process.
Keywords: traffic assignment, entropy-linear programming, flow decomposition, large-scale convex optimization, primal-dual method, bounded variation of subgradient.
Mots-clés : original-destination matrix
@article{MM_2014_26_6_a3,
     author = {A. Gasnikov and Yu. Dorn and Yu. Nesterov and S. Shpirko},
     title = {On the three-stage version of stable dynamic model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {34--70},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_6_a3/}
}
TY  - JOUR
AU  - A. Gasnikov
AU  - Yu. Dorn
AU  - Yu. Nesterov
AU  - S. Shpirko
TI  - On the three-stage version of stable dynamic model
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 34
EP  - 70
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_6_a3/
LA  - ru
ID  - MM_2014_26_6_a3
ER  - 
%0 Journal Article
%A A. Gasnikov
%A Yu. Dorn
%A Yu. Nesterov
%A S. Shpirko
%T On the three-stage version of stable dynamic model
%J Matematičeskoe modelirovanie
%D 2014
%P 34-70
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_6_a3/
%G ru
%F MM_2014_26_6_a3
A. Gasnikov; Yu. Dorn; Yu. Nesterov; S. Shpirko. On the three-stage version of stable dynamic model. Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 34-70. http://geodesic.mathdoc.fr/item/MM_2014_26_6_a3/