Three-dimensional magneto-hydrodynamic simulation of multi-wire cylindrical liners implosion using FLUX-3D code
Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional magneto-hydrodynamic model of current-conducting irradiating plasma is considered. This model lies in the basis of Eulerian (in cylindrical coordinates $r$-$\varphi$-$z$) FLUX-3D code developed in Scientific and Technical Center of RFNC-VNIIEF. Finite-difference methods of the model equation solutions using stationary regular spatial grid are described. Results of numerical 3D simulation of a multi-wire $Z$-pinch in the experiment Shot-51 at electro-physical facility $Z$ (USA) in a complete ($2\pi$) azimuth angle are presented. Computational geometry has been approximated to real configuration of the experiment, where electromagnetic energy had been supplied to a liner chamber through vacuum coaxial transmission line. Using numerical simulation the authors studied acceleration dynamic of the plasma ablated from tungsten wires depending on their quantity at initial cylindrical array. Results of 3D calculations of electromagnetic implosion process of the multi-wire $Z$-pinch at two methods of artificial perturbations imposition to plasma ablation intensity are also presented. Reasons of soft x-ray radiation pulses difference being generated in these cases are described.
Keywords: magneto-hydrodynamics, radiation transfer in plasma, current ablation of substance from multi-wire liner, dynamic $Z$-pinch, magnetic field topology, vacuum transmission line.
@article{MM_2014_26_6_a0,
     author = {A. P. Orlov and B. G. Repin},
     title = {Three-dimensional magneto-hydrodynamic simulation of multi-wire cylindrical liners implosion using {FLUX-3D} code},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_6_a0/}
}
TY  - JOUR
AU  - A. P. Orlov
AU  - B. G. Repin
TI  - Three-dimensional magneto-hydrodynamic simulation of multi-wire cylindrical liners implosion using FLUX-3D code
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 3
EP  - 16
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_6_a0/
LA  - ru
ID  - MM_2014_26_6_a0
ER  - 
%0 Journal Article
%A A. P. Orlov
%A B. G. Repin
%T Three-dimensional magneto-hydrodynamic simulation of multi-wire cylindrical liners implosion using FLUX-3D code
%J Matematičeskoe modelirovanie
%D 2014
%P 3-16
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_6_a0/
%G ru
%F MM_2014_26_6_a0
A. P. Orlov; B. G. Repin. Three-dimensional magneto-hydrodynamic simulation of multi-wire cylindrical liners implosion using FLUX-3D code. Matematičeskoe modelirovanie, Tome 26 (2014) no. 6, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2014_26_6_a0/

[1] V. D. Selemir, V. A. Demidov, V. F. Ermolovich i dr., “Issledovanie generatsii myagkogo rentgenovskogo izlucheniya v $Z$-pinchakh s zapitkoi ot spiralnykh vzryvomagnitnykh generatorov”, Fizika plazmy, 33:5 (2007), 424–434

[2] A. P. Orlov, V. D. Selemir, P. B. Repin, V. F. Ermolovich, “Two-dimensional numerical simulation of axial magnetic flux compression in $Z$-$\Theta$ pinch configuration”, Proc. 15$^{\mathrm{th}}$ IEEE Intern. Pulsed Power Conf. (Monterey, 2005), 296–299

[3] B. G. Repin, A. P. Orlov, P. B. Repin, V. D. Selemir, “Calculation Method of Radiation Spectral Transfer in Frameworks of Two-Dimensional Magnetohydrodynamic Code FLUX-rz”, IEEE Trans. on Plasma Science, 38:8 (2010), 1822–1827 | DOI

[4] V. A. Gasilov, S. V. Dyachenko, A. S. Boldarev i dr., “Paket prikladnykh programm MARPLE3D dlya modelirovaniya na vysokoproizvoditelnykh EVM impulsnoi magnitouskorennoi plazmy”, Preprinty IPM im. M. V. Keldysha, 2011, 020, 36 pp. | MR

[5] P. Yu. Edmund, M. E. Cuneo, M. P. Desjarlais, et al., “Three-dimensional effects in trailing mass in the wire-array Z-pinch”, Physics of Plasmas, 15 (2008), 056301 | DOI

[6] C. A. Jennings, M. E. Cuneo, E. M. Waisman, et al., “Simulations of the implosion and stagnation of compact wire arrays”, Physics of Plasmas, 17 (2010), 092703 | DOI

[7] B. G. Repin, A. P. Orlov, “Chislennoe modelirovanie mnogoprovolochnykh $Z$- i $Z$-$\Theta$ pinchei s pomoschyu magnitogidrodinamicheskogo koda FLUX-3D”, Moschnaya impulsnaya elektrofizika, Mezhdunarodnaya konferentsiya XIV Kharitonovskie tematicheskie nauchnye chteniya, FGUP «RFYaTs-VNIIEF», Sarov, 2013, 104–109

[8] D. Potter, Vychislitelnye metody v fizike, Mir, M., 1975, 392 pp.

[9] M. Yagi, K. Seki, Y. Matsumoto, “Development of a magnetohydrodynamic simulation code satisfying the solenoidal magnetic field condition”, Comput. Phys. Comm., 180 (2009), 1550–1557 | DOI | MR

[10] R. W. Lemke, M. D. Knudson, A. C. Robinson, et al., “Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates”, Phys. Plasmas, 10:5 (2003), 1867–1874 | DOI

[11] M. M. Basko, “Uravnenie sostoyaniya metallov v priblizhenii srednego iona”, Teplofizika vysokikh temperatur, 23:3 (1985), 483–491

[12] S. I. Braginskii, “Yavleniya perenosa v plazme”, Voprosy teorii plazmy, 1, Atomizdat, M., 1963, 183–272 pp.

[13] P. V. Sasorov, “Elektrosoprotivlenie peretyazhek $Z$-pinchei”, Fiz. plazmy, 18:3 (1992), 275–287

[14] V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, i dr., “Dinamika geterogennogo lainera s zatyanutym plazmoobrazovaniem”, Fizika plazmy, 27:2 (2001), 99–120

[15] R. M. Beam, R. F. Warming, “An implicit finite-difference algorithm for hyperbolic systems in conservation law form”, J. Comp. Physics, 22 (1976), 87–110 | DOI | MR | Zbl

[16] P. Rouch, Vychislitelnaya gidrodinamika, Mir, M., 1980, 618 pp. | Zbl

[17] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[18] R. B. Spielman, C. Deeney, G. A. Chandler, et al., “Tungsten wire-array $Z$-pinch experiments at 200 TW and 2 MJ”, Phys. Plasmas, 5:5 (1998), 2105–2111 | DOI