One integral characteristic of the set of genetic codes. Property of all known natural codes
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 113-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier, the author introduced the integral characteristics of the genetic code (Integral characteristics of the genetic code. Mathematical modeling, v. 22, № 9, 2010). Below we study one of these characteristics, which corresponds to the potential for building code overlapping genes when the same piece of DNA encodes two protein sequences. The study is conducted for a variety of genetic codes, which corresponds to two groups of such codes. First of all, considered hypothetical codes, which would provide a range of changes to this data using a different number of permutations of the codons in the standard genetic code. The second group of codes — natural genetic codes. It turned out that all the currently known natural genetic codes (which to date 15) have one thing in common. This property is formulated. Note that the first natural custom code was established in 1979 in a human cell, in a separate organelle — the mitochondria.
Keywords: overlappings of genes, Integral characteristic, hypothetical codes, codes 15 natural.
@article{MM_2014_26_5_a7,
     author = {N. N. Kozlov},
     title = {One integral characteristic of the set of genetic codes. {Property} of all known natural codes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a7/}
}
TY  - JOUR
AU  - N. N. Kozlov
TI  - One integral characteristic of the set of genetic codes. Property of all known natural codes
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 113
EP  - 125
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a7/
LA  - ru
ID  - MM_2014_26_5_a7
ER  - 
%0 Journal Article
%A N. N. Kozlov
%T One integral characteristic of the set of genetic codes. Property of all known natural codes
%J Matematičeskoe modelirovanie
%D 2014
%P 113-125
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a7/
%G ru
%F MM_2014_26_5_a7
N. N. Kozlov. One integral characteristic of the set of genetic codes. Property of all known natural codes. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 113-125. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a7/

[1] Kozlov N. N., “K voprosu o proizvolnosti “vybora” geneticheskogo koda”, DAN, 369:4 (1999), 553–556

[2] Kozlov N. N., “Analiz polnogo mnozhestva perekryvayuschikhsya genov”, DAN, 373:1 (2000), 108–111

[3] Kozlov N. N., “Matematicheskii analiz perekryvayuschikhsya genov i struktura geneticheskogo koda”, Matematicheskoe modelirovanie, 12:7 (2000), 97–101 | MR | Zbl

[4] Kozlov N. N., “Odin sposob khraneniya geneticheskoi informatsii”, Matematicheskoe modelirovanie, 14:8 (2002), 72–78 | Zbl

[5] Kozlov N. N., “Teorema dlya geneticheskogo koda”, DAN, 382:5 (2002), 593–597 | MR | Zbl

[6] Kozlov N. N., “Integralnye kharakteristiki geneticheskogo koda”, Matematicheskoe modelirovanie, 22:9 (2010), 51–66 | MR | Zbl

[7] Kozlov N. N., Matematicheskii analiz geneticheskogo koda, BINOM, M., 2010, 223 pp.

[8] Kozlov N. N., “Elementarnye geneticheskie perekrytiya”, Preprinty IPM, 2004, 064, 27 pp. http://www.keldysh.ru/papers/2004/prep64/prep2004_64.html | MR

[9] Wang Lei, Brock Ansgar, Herberich Brad, Schultz Peter G., “Expanding the genetic code of Escherichia coli”, Science, 292:5516 (2001), 498–500 | DOI

[10] Kozlov N. N., “Matematicheskii analiz geneticheskikh kodov”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 70–96 http://www.matbio.org/downloads_en/Kozlov2006(1_70).pdf

[11] Kozlov N. N., “Perekryvayuschiesya geny i struktura geneticheskogo koda”, Preprinty IPM, 2005, 113, 38 pp.