Free boundary method for numerical solving gas dynamics equations in domains with varying geometry
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 99-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a novel method for numerical solving the Euler equations of compressible fluid dynamics in domains that contain solid, impermeable, and in general case moving entries (objects) with stationary Cartesian grids. The method proposed is based on the approach of immersed boundary, in which calculations are carried out over all cells of a Cartesian grid that covers the whole computational domain including solid entries. The influence of the solid surface on the gas flow is taken into account by introducing effective fluxes of mass, momentum, and energy on the right-hand side of the governing equations. A survey of developed by now methods for solving such class of problems is presented, and advantages of the proposed method are discussed. The method is verified on calculations of a set of problems admitting analytical solutions, and applied to solution of a supersonic blunt body flow. The results obtained are compared with those of standard calculations with a curvilinear grid fitted with the body surface.
Keywords: computational gas dynamics, immersed boundary method, Cartesian grids.
@article{MM_2014_26_5_a6,
     author = {I. Menshov and M. Kornev},
     title = {Free boundary method for numerical solving gas dynamics equations in domains with varying geometry},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--112},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a6/}
}
TY  - JOUR
AU  - I. Menshov
AU  - M. Kornev
TI  - Free boundary method for numerical solving gas dynamics equations in domains with varying geometry
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 99
EP  - 112
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a6/
LA  - ru
ID  - MM_2014_26_5_a6
ER  - 
%0 Journal Article
%A I. Menshov
%A M. Kornev
%T Free boundary method for numerical solving gas dynamics equations in domains with varying geometry
%J Matematičeskoe modelirovanie
%D 2014
%P 99-112
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a6/
%G ru
%F MM_2014_26_5_a6
I. Menshov; M. Kornev. Free boundary method for numerical solving gas dynamics equations in domains with varying geometry. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 99-112. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a6/

[1] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 234 | MR

[2] Wang Z., Parthasarathy V., “A fully automated Chimera methodology for multiple moving body problems”, International Journal for Numerical Methods in Fluids, 2000, 919–938 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[3] Dadone A., Grossman B., Efficient Fluid Dynamic Design Optimization Using Cartesian Grids, AIAA Paper 2003-3959, Orlando, FL, June 2003

[4] Forrer H., Berger M., “Flow simulations on Cartesian grids involving complex moving geometries”, Proc. 7'th Intl. Conf. on Hyperbolic Problems (1998), 315–324 | MR | Zbl

[5] Pekkan K., “Multiple Stationary and Moving Boundary Handling in Cartesian Grids”, Proceedings 12th International Meshing Roundtable (Sandia National Laboratories, Sept. 2003), 285–292

[6] Henshaw W. D., Ogen: An Overlapping Grid Generator for Overture, Technical Report UCRLMA-132237, Lawrence Livermore National Laboratory, 1998

[7] Xu Z. F., Shu C. W., “Anti-diffusive flux corrections for high order finite difference WENO schemes”, Journal of Computational Physics, 205:2 (2005), 458–485 | DOI | MR | Zbl

[8] Harten Ami, “High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, 49 (1983), 357–393 | DOI | MR | Zbl

[9] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR

[10] Sanjiva K. Lele, Compact Finite Difference Schemes with Spectral-like Resolution Center for Turbulence Research, MS 202A-1, NASA-Ames Research Center, Moffett Field, California, 1991, 9 pp. | MR

[11] Peskin C. S., “Numerical analysis of blood flow in the heart”, J. Comput. Phys., 25 (1977), 220–252 | DOI | MR | Zbl

[12] Randall J. LeVeque, Donna Calhoun, “Cartesian Grid Methods for Fluid Flow in Complex Geometries”, Computational Modeling in Biological Fluid Dynamics, 124 (1999), 117–143 | MR

[13] Henry Bandringa, Immersed boundary methods, Master Thesis in Applied Mathematics, Institute of Mathematics and Computing Science, The Netherlands, 2010 | Zbl

[14] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR | Zbl

[15] van Leer B., “Towards the Ultimate Conservation Difference Scheme. V: A Second Order Sequel to Godunov's Method”, J. Comput. Phys., 32 (1979), 110–136

[16] Kermani M. J., Gerber A. G., Stockie J. M., “Thermodynamically Based Moisture Prediction Using Roe's Scheme”, The 4th Conference of Iranian AeroSpace Society (Amir Kabir University of Technology, Tehran, Iran, January 27–29, 2003)

[17] Denis Gueyffier, Jie Li, Ali Nadim, Ruben Scardovelli, Stephane Zaleski, “Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows”, Journal of Computational Physics, 152 (1999), 423–456 | DOI | Zbl