Monte Carlo simulation of the kinetic collisional equation with external fields
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 79-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

To deal with a spatially uniform weakly collisional system of particles the nonlinear kinetic equation with the collisional Landau–Fokker–Planck integral and external heat sources is considerd. A quasi-linear diffusion operator and the DC electrical field are used as heating terms. Particle heating and acceleration, as well as the runaway effect are analysed. The numerical method used for this effect is the Monte Carlo method (DSMC).
Mots-clés : Coulomb collisions, diffusion equation.
Keywords: kinetic Landau equation, Boltzmann equation, Monte-Carlo method, external electrical field
@article{MM_2014_26_5_a5,
     author = {A. V. Bobylev and I. F. Potapenko and S. A. Karpov},
     title = {Monte {Carlo} simulation of the kinetic collisional equation with external fields},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/}
}
TY  - JOUR
AU  - A. V. Bobylev
AU  - I. F. Potapenko
AU  - S. A. Karpov
TI  - Monte Carlo simulation of the kinetic collisional equation with external fields
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 79
EP  - 98
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/
LA  - ru
ID  - MM_2014_26_5_a5
ER  - 
%0 Journal Article
%A A. V. Bobylev
%A I. F. Potapenko
%A S. A. Karpov
%T Monte Carlo simulation of the kinetic collisional equation with external fields
%J Matematičeskoe modelirovanie
%D 2014
%P 79-98
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/
%G ru
%F MM_2014_26_5_a5
A. V. Bobylev; I. F. Potapenko; S. A. Karpov. Monte Carlo simulation of the kinetic collisional equation with external fields. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 79-98. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/

[1] Landau L. D., “Kineticheskoe uravnenie v sluchae kulonovskogo vzaimodeistviya”, ZhETF, 7 (1937), 203 | Zbl

[2] Rosenbluth M. N., MacDonald W. M., Judd D., “Fokker–Planck equation for an inverse-square force”, Phys. Rev., 107 (1957), 1–6 | DOI | MR | Zbl

[3] Bird G. A., Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press, Oxford, 1994, 458 pp. | MR

[4] Dreicer H., “Electron and ion runaway in a fully ionized gas, II”, Phys. Rev., 117 (1960), 329–342 | DOI | MR | Zbl

[5] Sivukhin D. V., “Kulonovskie stolknoveniya v polnostyu ionizovannoi plazme”, Voprosy teorii plazmy, 4, M., 1964

[6] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1982, 338 pp.

[7] Gurevich A. V., Zybin K. P., “Proboi na ubegayuschikh elektronakh i elektricheskie razryady vo vremya grozy”, Uspekhi fizicheskikh nauk, 171:11 (2001), 1177–1199 | DOI

[8] Stenflo L., “Runaway in weakly ionized plasmas”, Plasma Phys., 8 (1966), 665–673

[9] Potapenko I. F., Bobylev A. V., Mossberg E., “Deterministic and stochastic methods for nonlinear Landau–Fokker–Planck kinetic equations with applications to plasma physics”, Transp. Theory Stat. Phys., 37 (2008), 113–170 | DOI | MR | Zbl

[10] Bobylev A. V., Nanbu K., “Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau–Fokker–Planck equation”, Phys. Rev. E, 61 (2000), 4576–4586 | DOI | MR

[11] Nanbu K., “Theory of cumulative small-angle collisions in plasmas”, Phys. Rev. E, 55 (1997), 4642–4652 | DOI

[12] Bobylev A. V., Mossberg E., Potapenko I. F., “A DSMC method for the Landau–Fokker–Planck equation”, Proceedings of XXV International symposium on RGD, eds. M. S. Ivanov, A. K. Rebrov, Publ. of the Siberian Branch of RAS, Novosibirsk, 2006, 479–483

[13] Dimarko G., Caflish R., Pareschi L., “Direct Simulation Monte Carlo schemes for Coulomb interactions in plasmas”, Commun. Appl. Indust. Math., 1 (2010), 72–91 | MR

[14] Bobylev A. V., Karpov S. A., Potapenko I. F., “Metod Monte-Karlo dlya dvukhkomponentnoi plazmy”, Preprinty IPM, 2012, 021, 25 pp. | MR

[15] Bobylev A. V., Potapenko I. F., Karpov S. A., “Metod Monte-Karlo dlya dvukhkomponentnoi plazmy”, Matematicheskoe modelirovanie, 2012, no. 9, 35–49 | MR | Zbl

[16] Bobylev A. V., Karpov S. A., Potapenko I. F., “Metody tipa Monte-Karlo dlya modelirovaniya kulonovskikh stolknovenii v mnogokomponentnoi plazme”, Preprinty IPM, 2012, 026, 32 pp. | MR

[17] Bobylev A. V., Potapenko I. F., Karpov S. A., “DSMC methods for multicomponent plasmas”, AIP Conference Proceedings, 1501, 541–548 | DOI

[18] Bobylev A. V., “O razlozhenii integrala stolknovenii Boltsmana v ryad Landau”, DAN SSSR, 225:3 (1975), 535–538 ; Бобылев А. В., “Приближение Ландау в кинетической теории газов и плазмы”, Препринты ИПМ, 1974, 076, 49 с. | MR

[19] Degond P., Lucquin-Desreux B., “The Fokker–Planck asymptotics of the Boltzmann collision operator in the Coulomb case”, Math. Models Methods Appl. Sci., 2 (1992), 167–182 | DOI | MR | Zbl

[20] Desvillettes L., “On asymptotics of the Boltzmann equation when collisions became grazing”, Transp. Th. Stat. Phys., 2 (2002), 259–276 | MR

[21] Takizuka T., Abe H., “A binary collision model for plasma simulation with a particle code”, J. Comput. Phys., 25 (1977), 205–219 | DOI | Zbl

[22] Wang C. et al., “Particle simulation of Coulomb collisions: Comparing the methods of Takizuka Abe and Nanbu”, J. Comput. Phys., 227 (2008), 4308–4329 | DOI | MR | Zbl

[23] U.S.S.R. Comput. Math. and Math. Phys., 28 (1988), 164–169 | DOI | MR

[24] Sov. Phys. Dokl., 34 (1989), 212–214 | MR

[25] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971, 332 pp.

[26] Kac M., Probability and related topics in physical sciences, Interscience Publishers, Ltd., London–New York, 1957, 266 pp.

[27] Bobylev A. V., “O tochnykh resheniyakh uravneniya Boltsmana”, DAN SSSR, 225:6 (1975), 1296–1299 | MR | Zbl

[28] Bobylev A. V., Potapenko I. F., Chuyanov V. A., “Kineticheskie uravneniya tipa Landau kak model uravneniya Boltsmana i polnostyu konservativnye raznostnye skhemy”, Zh. vychisl. matem. i mat. fiz., 20 (1980), 993–1004 | MR | Zbl

[29] Potapenko I. F., Bobylev A. V., Azevedo C. A., Assis A. S., “Evolution of the distribution function tails for the power law interaction potentials”, Phys. Rev. E, 56 (1997), 7159–7166 | DOI