Monte Carlo simulation of the kinetic collisional equation with external fields
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 79-98

Voir la notice de l'article provenant de la source Math-Net.Ru

To deal with a spatially uniform weakly collisional system of particles the nonlinear kinetic equation with the collisional Landau–Fokker–Planck integral and external heat sources is considerd. A quasi-linear diffusion operator and the DC electrical field are used as heating terms. Particle heating and acceleration, as well as the runaway effect are analysed. The numerical method used for this effect is the Monte Carlo method (DSMC).
Mots-clés : Coulomb collisions, diffusion equation.
Keywords: kinetic Landau equation, Boltzmann equation, Monte-Carlo method, external electrical field
@article{MM_2014_26_5_a5,
     author = {A. V. Bobylev and I. F. Potapenko and S. A. Karpov},
     title = {Monte {Carlo} simulation of the kinetic collisional equation with external fields},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/}
}
TY  - JOUR
AU  - A. V. Bobylev
AU  - I. F. Potapenko
AU  - S. A. Karpov
TI  - Monte Carlo simulation of the kinetic collisional equation with external fields
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 79
EP  - 98
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/
LA  - ru
ID  - MM_2014_26_5_a5
ER  - 
%0 Journal Article
%A A. V. Bobylev
%A I. F. Potapenko
%A S. A. Karpov
%T Monte Carlo simulation of the kinetic collisional equation with external fields
%J Matematičeskoe modelirovanie
%D 2014
%P 79-98
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/
%G ru
%F MM_2014_26_5_a5
A. V. Bobylev; I. F. Potapenko; S. A. Karpov. Monte Carlo simulation of the kinetic collisional equation with external fields. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 79-98. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a5/