Simulation of toroidal and poloidal electromagnetic fields
Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with two well-known physical mathematical problems. One of them is theoretical and concerns the excitation of the Earth’s main geomagnetic field using the so-called dynamo mechanism. This problem originates from the works on astrophysics by Parker, Steenbeck, Krause, Zeldovich and some others as applied to the Earth’s conditions discussed in publications by Bullard, Backus, Moffat. The second problem concerns the development of the theory of physical-mathematical analysis of the data observed by geomagnetic observatories, the world magnetic survey and satellites with the view to revealing the source of the geomagnetic field and its variations from the ground-based observations and originates from Gauss’ and Schmidt’s publications. Physical and mathematical approaches to solving the above-named problems differ. Therefore the main objective of the author’s works published is to unite such approaches based on toroidal and poloidal electric fields from toroidal electric currents.
Keywords: simulation of toroidal electric currents and fields, theorems of existence of fields and currents.
@article{MM_2014_26_5_a0,
     author = {V. V. Aksenov},
     title = {Simulation of toroidal and poloidal electromagnetic fields},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {26},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_5_a0/}
}
TY  - JOUR
AU  - V. V. Aksenov
TI  - Simulation of toroidal and poloidal electromagnetic fields
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 3
EP  - 24
VL  - 26
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_5_a0/
LA  - ru
ID  - MM_2014_26_5_a0
ER  - 
%0 Journal Article
%A V. V. Aksenov
%T Simulation of toroidal and poloidal electromagnetic fields
%J Matematičeskoe modelirovanie
%D 2014
%P 3-24
%V 26
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_5_a0/
%G ru
%F MM_2014_26_5_a0
V. V. Aksenov. Simulation of toroidal and poloidal electromagnetic fields. Matematičeskoe modelirovanie, Tome 26 (2014) no. 5, pp. 3-24. http://geodesic.mathdoc.fr/item/MM_2014_26_5_a0/

[1] Gauss K. F., Izbrannye trudy po zemnomu magnetizmu, Izd. AN SSSR, L., 1952 | MR

[2] Van Vleuten, Over de dagelijsche variatie van het Ardmagnetisme, No 102, Koninklijk Ned. Meteor. Instit., Utrecht, 1917

[3] Benkova N. P., Spokoinye solnechno-sutochnye variatsii zemnogo magnetizma, Gidrometeoizdat, M.–L., 1941, 72 pp.

[4] Parkinson U. D., Vvedenie v geomagnetizm, Mir, M., 1986 | MR

[5] Aksenov V. V., “Ob uchete vertikalnykh tokov pri sfericheskom analize periodicheskikh variatsii”, Geologiya i geofizika, 1970, no. 5, 125–130

[6] Aksenov V. V., Osnovy geomagnetizma, Izd. SO RAN, Novosibirsk, 2012

[7] Aksenov V. V., “O nekotorykh solenoidalnykh vektornykh polyakh v sfericheskikh oblastyakh”, Differentsialnye uravneniya, 48:7 (2012), 1056–1059 | Zbl

[8] Aksenov V. V., “Maxwell's equations for the Earth's electromagnetic fields of force and without it”, Bulletin of the Novosibirsk Computing Center, 13 (2010), 1–5 | Zbl

[9] Bullard E. C., “The magnetic field within the Earth”, Proc. Roy. Soc. Lond., 1949, 433–453 | DOI

[10] Larmor J., “How could a rotating body Such as the Sun become a magnet”, Rep. Brit. Assoc. Sci., 1919, 60–159

[11] Chetaev D. N., Direktsionnyi analiz magnitotelluricheskikh nablyudenii, IFZ, M., 1985

[12] Aksenov V. V., “The Foundations of Geomagnetism”, Bulletin of the Novosibirsk Computing Center, 15 (2012), 1–100

[13] Moffat G., Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980

[14] Aksenov V. V., Elektromagnitnoe pole Zemli, Izd SO RAN, Novosibirsk, 2010

[15] Backus G., “Poloidal and Toroidal Fields in Geomagnetic Field Modtling”, Reviews of Geophysics, 24:1 (1986) | DOI | MR

[16] Aksenov V. V., “Ob inversiyakh glavnogo geomagnitnogo polya”, Geofizicheskii zhurnal, 23:2 (2001) | MR

[17] Kaulling T., Magnitnaya elektrodinamika, Atomizdat, M., 1978

[18] Braginskii S. I., “Kinematicheskie modeli gidromagnitnogo dinamo Zemli”, Geomagnetizm i aeronomiya, 4:4 (1964)

[19] Aksenov V. V., “Fiziko-matematicheskoe modelirovanie geomagnitnogo polya, nablyudaemogo mirovoi setyu geomagnitnykh stantsii, 1”, Izv. VUZov, Geologiya i razvedka, 2012, no. 4

[20] Yanovskii B. M., Zemnoi magnetizm, v. 1, 2, GITTL, L., 1978

[21] Aksenov V. V., “Ob istochnike glavnogo geomagnitnogo polya, 2”, Izv. VUZov, Geologiya i razvedka, 2012, no. 5

[22] Parker Yu., Kosmicheskie magnitnye polya, V 2-kh t., Mir, M., 1982

[23] Steenbeck M., Krause F., Radler K.-H., Electrodynamische Eigenschaften turbulenter Plasmen, Akademie-Verlag, 1963 | Zbl

[24] Zeldovich Ya., Rusmaikin A., Sokoloff D., Magnetic Fields in Austropysics, Gordon and Breach, New York, 1983

[25] Aksenov V. V., Toroidalnoe pole v atmosfere Zemli, Izd. IVMiMG SO RAN, 1997