Burnett hypersonic thin shock layer nеаr the windward side of a flat plate
Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simplification of the thin shock one-layer Burnett equations in reference to task of the rarefied gas hypersonic flow around the windward side of a flat plate with the great angle of attack is made on the basis of the two-layer ideology of a thin viscous shock layer theory for the non-thin bodies, assumed two (smear shock plus own shock layer) specific regions (layers) between the free-stream flow and the streamlined surface. It is demonstrated, that the Burnett thin shock layer problem under consideration in two-layer approach fully reduce to a corresponding Navier–Stokes one.
Keywords: Burnett equations, hypersonic flow, thin shock layer, two-layer model, windward side of flat plate with great angle of attack.
@article{MM_2014_26_4_a8,
     author = {A. L. Ankudinov},
     title = {Burnett hypersonic thin shock layer n{\cyre}{\cyra}r the windward side of a flat plate},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_4_a8/}
}
TY  - JOUR
AU  - A. L. Ankudinov
TI  - Burnett hypersonic thin shock layer nеаr the windward side of a flat plate
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 110
EP  - 118
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_4_a8/
LA  - ru
ID  - MM_2014_26_4_a8
ER  - 
%0 Journal Article
%A A. L. Ankudinov
%T Burnett hypersonic thin shock layer nеаr the windward side of a flat plate
%J Matematičeskoe modelirovanie
%D 2014
%P 110-118
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_4_a8/
%G ru
%F MM_2014_26_4_a8
A. L. Ankudinov. Burnett hypersonic thin shock layer nеаr the windward side of a flat plate. Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 110-118. http://geodesic.mathdoc.fr/item/MM_2014_26_4_a8/

[1] Lumpkin F. E., Chapman D. R., “Accuracy of the Burnett Equations for Hypersonic Real Gas Flows”, AIAA J., 6:3 (1992), 419–425

[2] Zhong X., MacCormack R. W., Chapman D. R., “Stabilization of the Burnett Equations and Application to Hypersonic Flows”, AIAA J., 31:6 (1993), 1036–1037 | DOI

[3] Galkin V. S., Shavaliev M. Sh., “Gazodinamicheskie uravneniya vysshikh priblizhenii metoda Chepmena–Enskoga”, Izv. RAN, MZhG, 1998, no. 4, 3–28 | MR | Zbl

[4] Fiscko K. A., Chapman D. R., “Comparison of Burnett, Super-Burnett and Monte-Carlo Solutions for Hypersonic Shock Structure”, Rarefied Gas Dynamics, Progr. in Astronaut. and Aeronaut., 118, AIAA, Washington, 1989, 374–395

[5] Chou L. C., Deng Z.-T., Liaw G.-S., Comparison of Shock Wave Structures by Solving Burnett and Boltzmann Equations, AIAA Paper No 2056, 1994, 8 pp.

[6] Salomons E., Mareschal M., “Usefulness of the Burnett Description of Strong Shock Waves”, Phys. Rev. Lett., 69:2 (1992), 269–272 | DOI

[7] Cheng H. K., “The Viscous Shock Layer Problem Revisited”, Internat. Conf. Research in Hypersonic Flows and Hypersonic Technologies (Sept. 19–21, 1994, Zhukovsky, Russia), 16 pp.

[8] Cheng H. K., Emanuel G., “Perspective on Hypersonic Nonequilibrium Flow”, AIAA J., 33:3 (1995), 385–400 | DOI | Zbl

[9] Ankudinov A. L., “Asimptoticheskaya model tonkogo udarnogo sloya okolo klina-konusa dlya priblizheniya Barnetta”, Matematicheskoe modelirovanie, 22:8 (2010), 24–32 | MR | Zbl

[10] Cheng H. K., The blunt body problem in hypersonic flow at low Reynolds number, IAS Paper No 63-92, 1963, 100 pp.

[11] Ankudinov A. L., “Raschet vyazkogo giperzvukovogo obtekaniya pri umerennykh chislakh Reinoldsa”, Aerodinamicheskoe nagrevanie pri giperzvukovykh skorostyakh potoka, Tr. TsAGI, 1106, 1968, 176–191