Mathematical model of dynamics of attention of the person during game
Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 80-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the equation of dynamics of attention during perception of one external stimulus, it is constructed the elementary mathematical and computer model of dynamics of attention of the person during game (it is a question, first of all, of electronic games of type «Micky maus», «Tetris», etc.). Some principles of the dynamic organization of games are stated. Mathematical definitions of some characteristics of a psychological condition of the player are given.
Keywords: game, enthusiasm, interest, desire, fascination, depth of impression, consciousness, unconscious.
Mots-clés : attention
@article{MM_2014_26_4_a6,
     author = {A. V. Glasko and L. G. Sadykhova},
     title = {Mathematical model of dynamics of attention of the person during game},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {80--96},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_4_a6/}
}
TY  - JOUR
AU  - A. V. Glasko
AU  - L. G. Sadykhova
TI  - Mathematical model of dynamics of attention of the person during game
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 80
EP  - 96
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_4_a6/
LA  - ru
ID  - MM_2014_26_4_a6
ER  - 
%0 Journal Article
%A A. V. Glasko
%A L. G. Sadykhova
%T Mathematical model of dynamics of attention of the person during game
%J Matematičeskoe modelirovanie
%D 2014
%P 80-96
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_4_a6/
%G ru
%F MM_2014_26_4_a6
A. V. Glasko; L. G. Sadykhova. Mathematical model of dynamics of attention of the person during game. Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 80-96. http://geodesic.mathdoc.fr/item/MM_2014_26_4_a6/

[1] Glasko A. V., “Model dinamiki vnimaniya v protsesse vospriyatiya”, Zhurn. vyssh. nervn. deyat. im. I. P. Pavlova, 58:6 (2008), 738–754

[2] Glasko A. V., “O vospriyatii muzykalnoi melodii”, Obozr. prikl. i promyshl. matem., 15:2 (2008), 279–280

[3] Glasko A. V., “Vozmozhnyi mekhanizm vospriyatiya muzyki”, Matematika, informatika, ikh prilozheniya i rol v obrazovanii, Tezisy dokladov Rossiiskoi Shkoly-konferentsii, RUDN, M., 2009, 173–175

[4] Glasko A. V., “O vospriyatii khudozhestvennoi kompozitsii”, Obozr. prikl. i promyshl. matem., 15:2 (2008), 278–279

[5] Glasko A. V., “Sintez zakona induktsii Pavlova i psikhofizicheskogo zakona Stivensa v dinamicheskom uravnenii protsessa vospriyatiya”, Intellektualnye sistemy, Trudy mezhdunarodnoi konferentsii, v. 2, M., 2005, 166–174

[6] Chuprikova N. I., “O skorosti razvitiya i stepeni kontsentrirovannosti lokalnogo ochaga povyshennoi vozbudimosti pri vydelenii ob'ekta iz fona”, Problemy differentsialnoi psikhologii, v. 7, ed. Nebylitsyn V. D., Prosveschenie, M., 1972, 156–175

[7] Freid Z., Vvedenie v psikhoanaliz. Lektsii, Nauka, M., 1990, 455 pp.

[8] Sokolov E. N., Teoreticheskaya psikhofiziologiya, Izd-vo MGU, M., 1986, 107 pp.

[9] Danilova N. N., Krylova A. L., Fiziologiya vysshei nervnoi deyatelnosti, Uchebnaya literatura, M., 1997