Oil reservoir hydrodynamic model zonal reduction technique
Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Rough model of oil reservoir local area hydrodynamics, based on simple geometrics of regular well grid, decreases accuracy of analysis due to equilibrium offset. Computational algorithm of initially dense element grid reduction, considered in the article, corrects this drawback, providing equality of equilibrium states in full-scale and reduced models. Dynamical error of bottom-hole pressure is compensated by implementation of additional radial nearwell zone, taking into consideration fast hydrodynamics of inflow into well.
Keywords: reservoir modeling, model reduction, aggregation, finite elements, permeability.
@article{MM_2014_26_4_a1,
     author = {I. G. Solovyev and R. V. Raspopov},
     title = {Oil reservoir hydrodynamic model zonal reduction technique},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_4_a1/}
}
TY  - JOUR
AU  - I. G. Solovyev
AU  - R. V. Raspopov
TI  - Oil reservoir hydrodynamic model zonal reduction technique
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 21
EP  - 32
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_4_a1/
LA  - ru
ID  - MM_2014_26_4_a1
ER  - 
%0 Journal Article
%A I. G. Solovyev
%A R. V. Raspopov
%T Oil reservoir hydrodynamic model zonal reduction technique
%J Matematičeskoe modelirovanie
%D 2014
%P 21-32
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_4_a1/
%G ru
%F MM_2014_26_4_a1
I. G. Solovyev; R. V. Raspopov. Oil reservoir hydrodynamic model zonal reduction technique. Matematičeskoe modelirovanie, Tome 26 (2014) no. 4, pp. 21-32. http://geodesic.mathdoc.fr/item/MM_2014_26_4_a1/

[1] Zdolnik S., Pashali A., Markelov D., Volkov M., “Real-time Optimization Approach for 15,000 ESP Wells”, SPE, 2008, 112236

[2] Naevdal G., Brouwer D. R., Jansen J. D., “Waterflooding using closed-loop control”, Computational Geosciences, 2006, no. 10, 37–60 | DOI | MR | Zbl

[3] Saputelli L., Nikolaou M., Economides M. J., “Real-time reservoir management: A multiscale adaptive optimization and control approach”, Computational Geosciences, 2006, no. 10, 61–96 | DOI | MR | Zbl

[4] Forsait Dzh., Moler K., Chislennoe reshenie sistem lineinykh algebraicheskikh uravnenii, Mir, M., 1969, 168 pp. | MR

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[6] Poznyak A. S., Advanced Mathematical Tools for Automatic Control Engineers. Deterministic Techniques, Elsevier Ltd, 2008, 774 pp. | MR

[7] Solovev I. G., Raspopov R. V., “Ortogonalnoe redutsirovanie modeli v zadache identifikatsii filtratsionno-emkostnykh parametrov neftyanykh kollektorov”, Matematicheskoe modelirovanie, 23:2 (2011), 96–106

[8] Kaleta M. P., Hanea R. G., Heemink A. W., Jansen J. D., “Model-reduced gradient-based history matching”, Computational Geosciences, 2011, no. 15, 35–53

[9] Aziz X., Settari E., Matematicheskoe modelirovanie plastovykh sistem, Nedra, M., 1982, 408 pp.

[10] Olshanskii M. A., Lektsii i uprazhneniya po mnogosetochnym metodam, Fizmatlit, M., 2005, 168 pp.

[11] Schelkachev V. N., Lapuk B. B., Podzemnaya gidravlika, RKhD, Izhevsk, 2001, 736 pp.

[12] Basniev K. S. i dr., Podzemnaya gidravlika, Nedra, M., 1986, 303 pp.