Modeling of thin film explosive boiling process during homogeneous sub-second heating
Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 125-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The explosive boiling process of thin film is investigated in the framework of classical molecular dynamics simulation in the case of homogeneous sub-nanosecond heating. The results of calculations show that at these conditions the surface evaporation process considerably affects the explosive boiling picture due to surface vaporization cooling and formation of non-homogeneous (convex) spatial temperature distribution in the homogeneously heated film.
Keywords: molecular dynamics, volume heating, surface evaporation, explosive boiling.
@article{MM_2014_26_3_a8,
     author = {V. I. Mazhukin and A. V. Shapranov and A. A. Samokhin and A. Yu. Ivochkin},
     title = {Modeling of thin film explosive boiling process during homogeneous sub-second heating},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_3_a8/}
}
TY  - JOUR
AU  - V. I. Mazhukin
AU  - A. V. Shapranov
AU  - A. A. Samokhin
AU  - A. Yu. Ivochkin
TI  - Modeling of thin film explosive boiling process during homogeneous sub-second heating
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 125
EP  - 136
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_3_a8/
LA  - ru
ID  - MM_2014_26_3_a8
ER  - 
%0 Journal Article
%A V. I. Mazhukin
%A A. V. Shapranov
%A A. A. Samokhin
%A A. Yu. Ivochkin
%T Modeling of thin film explosive boiling process during homogeneous sub-second heating
%J Matematičeskoe modelirovanie
%D 2014
%P 125-136
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_3_a8/
%G ru
%F MM_2014_26_3_a8
V. I. Mazhukin; A. V. Shapranov; A. A. Samokhin; A. Yu. Ivochkin. Modeling of thin film explosive boiling process during homogeneous sub-second heating. Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 125-136. http://geodesic.mathdoc.fr/item/MM_2014_26_3_a8/

[1] Samokhin A. A., “Fazovye perekhody pervogo roda pri deistvii lazernogo izlucheniya na pogloschayuschie kondensirovannye sredy”, Deistvie lazernogo izlucheniya na pogloschayuschie kondensirovannye sredy, Trudy IOFAN, 13, Nauka, M., 1990, 119

[2] Samokhin A. A., “O nekotorykh osobennostyakh razvitogo ispareniya kondensirovannykh sred lazernym izlucheniem”, Kvantovaya elektronika, 1:9 (1974), 2056–2059

[3] Zhigilei L. V., Lin Z., Ivanov D. S., “Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion”, J. Phys. Chem. C, 113 (2009), 11892–11906 | DOI

[4] Lorazo P., Lewis L. J., Meunier M., “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation”, Physical Review B, 73 (2006), 134108 | DOI

[5] Norman G. E., Starikov S. V., Stegailov V. V., “Atomisticheskoe modelirovanie lazernoi ablyatsii zolota: effekt relaksatsii davleniya”, ZhETF, 141:5 (2012), 910–918

[6] Ionin A. A., Kudryashov S. I., Seleznev L. V., Sinitsyn D. V., Bunkin A. F., Lednev V. N., Pershin S. M., “Termicheskoe plavlenie i ablyatsiya kremniya femtosekundnym lazernym izlucheniem”, ZhETF, 143:3 (2013), 403–422

[7] Mazhukin V. I., Shapranov A. V., “Molekulyarno-dinamicheskoe modelirovanie protsessov nagreva i plavleniya metallov. I: Model i vychislitelnyi algoritm”, Preprinty Instituta prikladnoi matematiki im. M. V. Keldysha RAN, 2012, 031, 27 pp.

[8] Daw M. S., Baskes M. I., “Embedded-atom method: Derivation and application to impurities and other defects in metals”, Phys. Rev. B, 29 (1984), 6443–6453 | DOI

[9] Foiles S. M., Baskes M. I., Daw M. S., “Embedded-atom-method functions for the fcc metals $\mathrm{Cu}$, $\mathrm{Ag}$, $\mathrm{Au}$, $\mathrm{Ni}$, $\mathrm{Pd}$, $\mathrm{Pt}$, and their alloys”, Phys. Rev. B, 33 (1986), 7983–7991 | DOI

[10] Zhakhovskii V. V., Inogamov N. A., Petrov Yu. V., Ashitkov S. I., Nishihara K., “Two-temperature relaxation and melting after absorption of femtosecond laser pulse”, Appl. Surf. Sci., 255:24 (2009), 9592–9596 | DOI

[11] Mazhukin V. I., Shapranov A. V., “Molekulyarno-dinamicheskoe modelirovanie protsessov nagreva i plavleniya metallov. II: Vychislitelnyi eksperiment”, Preprinty Instituta prikladnoi matematiki im. M. V. Keldysha RAN, 2012, 032, 24 pp. | MR

[12] Mazhukin V. I., Shapranov A. V., Perezhigin V. E., “Matematicheskoe modelirovanie teplofizicheskikh svoistv, protsessov nagreva i plavleniya metallov metodom molekulyarnoi dinamiki”, Mathematica Montisnigri, 24 (2012), 47–66 | MR

[13] Verlet L., “Computer “experiments” on classical fluids. I: Thermodynamical properties of Lennard–Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI

[14] Yang T. H., Pan C., “Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient”, Intern. Journ. of Heat and Mass Transfer, 48 (2005), 3516–3526 | DOI | Zbl

[15] Landau L. D., Zeldovich Ya. B., “O sootnoshenii mezhdu zhidkim i gazoobraznom sostoyaniem u metallov”, ZhETF, 14 (1944), 32–35

[16] Kartashov I. N., Samokhin A. A., Smurov I. Yu., “Boundary conditions and evaporation front instabilities”, J. Phys. D: Appl. Phys., 38 (2005), 3703–3714 | DOI

[17] Mazhukin V. I., Samokhin A. A., “Boundary conditions for gas-dynamical modeling of evaporation process”, Mathematica Montisnigri, 24 (2012), 8–17 | MR