Even–odd parity transport equations. 1:~Algebraic and centered forms of the scattering source
Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 75-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equivalent formulation of the linear transport equation of neutral particles (neutrons, photons) as a system of two equations for the even and odd parts of the distribution function. The scattering source of the even-odd parity transport equations is transformed into non-linear algebraic form and into centered form. The algebraic form of the source is constructed from the “net result” of two opposite processes — the escape of particles from the beam and the coming of particles in the beam due to scattering processes. To obtain the centered form, compensation of the main contributions of these opposite processes is performed. We propose the iterative method for solving even-odd parity transport equations with algebraic or centered forms of scattering source. The convergence of the iterations in a plane problem has been studied.
Mots-clés : neutron and photon transport equation
Keywords: iterative method, numerical simulation, nuclear reactors, radiative heat transfer.
@article{MM_2014_26_3_a5,
     author = {A. V. Shilkov},
     title = {Even{\textendash}odd parity transport equations. {1:~Algebraic} and centered forms of the scattering source},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--96},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_3_a5/}
}
TY  - JOUR
AU  - A. V. Shilkov
TI  - Even–odd parity transport equations. 1:~Algebraic and centered forms of the scattering source
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 75
EP  - 96
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_3_a5/
LA  - ru
ID  - MM_2014_26_3_a5
ER  - 
%0 Journal Article
%A A. V. Shilkov
%T Even–odd parity transport equations. 1:~Algebraic and centered forms of the scattering source
%J Matematičeskoe modelirovanie
%D 2014
%P 75-96
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_3_a5/
%G ru
%F MM_2014_26_3_a5
A. V. Shilkov. Even–odd parity transport equations. 1:~Algebraic and centered forms of the scattering source. Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 75-96. http://geodesic.mathdoc.fr/item/MM_2014_26_3_a5/

[1] Kuznetsov E. S., “Ob ustanovlenii balansa luchistoi energii v pogloschayuschei i rasseivayuschei atmosfere”, Izvestiya AN SSSR, seriya Geograficheskaya i geofizicheskaya, 4:6 (1940), 813–842; Кузнецов Е. С., Избранные научные труды, Физматлит, М., 2003, 784 с. | Zbl

[2] Vladimirov V. S., Mathematical problems in the one-velocity theory of particle transport, AECL-1661, Atomic Energy of Canada Ltd., Ontario, 1963, 303 pp. | MR

[3] Davison B., Sykes J. B., Neutron transport theory, Oxford University Press, London, 1958 | MR

[4] Kaplan S., Davis J. A., “Canonical and involutory transformations of the variational problems of transport theory”, Journal of Nuclear Energy Science and Engineering, 28 (1967), 166–176

[5] Agoshkov V. I., Nekotorye voprosy teorii i priblizhennogo resheniya zadach o perenose chastits, Izd-vo Otdela vychislitelnoi matematiki AN SSSR, M., 1984, 207 pp.

[6] Lebedev V. I., “Metod kharakteristik dlya resheniya kineticheskogo uravneniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 6:2 (1966), 251–275

[7] Lebedev V. I., “O nakhozhdenii reshenii kineticheskikh zadach”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 6:5 (1966), 895–912

[8] Marchuk G. I., Lebedev V. I., Numerical Methods in the Theory of Neutron Transport, Harwood Academic Publishers, London, 1986, 601 pp. | MR | MR

[9] Miller W. F. Jr., Lewis E. E., Rossow E. C., “The application of phase-space finite elements to the two-dimensional neutron transport equation in X-Y geometry”, Journal of Nuclear Energy Science and Engineering, 52 (1973), 12–22

[10] Lillie R. A., Robinson J. C., A linear triangle finite element formulation for multigroup neutron transport analysis with anisotropic scattering, ORNL/TM-5281, Oak ridge National Laboratory, US, 1976, 159 pp.

[11] Lewis E. E., “Second-Order Neutron Transport Methods”, Nuclear Computational Science: A Century in Review, eds. Azmy Y., Sartori E., Springer Science, Dordrecht–New York, 2010, 85–115, 474 pp. | DOI

[12] Wareing T. A., McGhee J. M., Morel J. E., Pautz S. D., “Discontinuous Finite Element SnM ethods on Three-Dimensional Unstructured Grids”, Journal of Nuclear Energy Science and Engineering, 138 (2001), 256–268

[13] Joseph J. H., Wiscombe W. J., Weinman J. A., “The Delta-Eddington Approximation for Radiative Flux Transfer”, Journal of the Atmospheric Sciences, 33 (1976), 2452–2459 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[14] Wiscombe W. J., “The Delta-M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions”, Journal of the Atmospheric Sciences, 34 (1977), 1408–1422 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[15] Adams M. L., Larsen E. W., “Fast iterative methods for discrete-ordinates particle transport calculations”, Journal Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[16] Shilkov A. V., “Chetno-nechetnye kineticheskie uravneniya perenosa chastits. 2: Konechno-analiticheskaya kharakteristicheskaya skhema dlya odnomernykh zadach”, Matematicheskoe modelirovanie, 2014 (to appear)