Piecewise polynomial approximation of the sixth order with automatic knots detection
Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 31-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Coefficients of a local segment model for piecewise polynomial approximation of the sixth order are evaluated using values of the function and of its first derivative at three knots of the support. Formulae for coefficients of the function expansion in degrees of $x-x_0$ on a three-point grid are obtained within the framework of the recently proposed basic element method. An algorithm for automatic knot detection is developed. Numerical calculations applying quite complicated tests have shown high efficiency of the model with respect to the calculation stability, accuracy and smoothness of approximation.
Keywords: piecewise polynomial approximation, least squares method, basic elements method, optimal knot selection, smoothing, efficiency of algorithms.
Mots-clés : interpolation
@article{MM_2014_26_3_a2,
     author = {N. D. Dikusar},
     title = {Piecewise polynomial approximation of the sixth order with automatic knots detection},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--48},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_3_a2/}
}
TY  - JOUR
AU  - N. D. Dikusar
TI  - Piecewise polynomial approximation of the sixth order with automatic knots detection
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 31
EP  - 48
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_3_a2/
LA  - ru
ID  - MM_2014_26_3_a2
ER  - 
%0 Journal Article
%A N. D. Dikusar
%T Piecewise polynomial approximation of the sixth order with automatic knots detection
%J Matematičeskoe modelirovanie
%D 2014
%P 31-48
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_3_a2/
%G ru
%F MM_2014_26_3_a2
N. D. Dikusar. Piecewise polynomial approximation of the sixth order with automatic knots detection. Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 31-48. http://geodesic.mathdoc.fr/item/MM_2014_26_3_a2/

[1] Chebyshev P. L., Izbrannye trudy, AN SSSR, M., 1955, 614–648 | MR

[2] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i eë prilozheniya, Mir, M., 1972, 141 | MR

[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[4] Kalitkin H. H., Chislennye metody, FML, M., 1977

[5] De Bor K., Prakticheskoe rukovodstvo po splainam, Per. s angl., Radio i svyaz, M., 1985 | MR | Zbl

[6] Kalitkin N. N., Shlyakhov I. M., “V-splainy vysokikh stepenei”, Matem. modelirovanie, 11:11 (1999), 64–74 | MR | Zbl

[7] Dikoussar N. D., “Function parameterization by using 4-point transforms”, Comput. Phys. Commun., 99 (1997), 235–254 | DOI | Zbl

[8] Dikusar N. D., “Metod bazisnykh elementov”, Matem. modelirovanie, 22:12 (2010), 115–136 | Zbl

[9] Dikusar N. D., Torok Ch., “Avtomaticheskii poisk uzlov dlya kusochno-kubicheskoi approksimatsii”, Matem. modelirovanie, 18:3 (2006), 23–40 | MR

[10] Franke R., “Scattered Data Interpolation: Tests of Some Methods”, Mathematics of Computation, 38 (1982), 181 | MR | Zbl