Numerical modeling of flow turbulization and relaminarization due to external active influence
Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Menter $\gamma-\mathrm{Re}_\theta$ transition model is generalized for non-SST turbulence models. The new model is coupled with Spalart–Allmaras model. A good agreement with base model simulations and experimental data is obtained. The effect of local energy supply to a boundary layer on transition region in supersonic flow is studied numerically. It is demonstrated that heat source can delay transition.
Mots-clés : RANS, transition
Keywords: Spalart–Allmaras, Menter transition model, boundary layer control.
@article{MM_2014_26_3_a0,
     author = {I. Yu. Kudryashov and A. E. Lutsky},
     title = {Numerical modeling of flow turbulization and relaminarization due to external active influence},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_3_a0/}
}
TY  - JOUR
AU  - I. Yu. Kudryashov
AU  - A. E. Lutsky
TI  - Numerical modeling of flow turbulization and relaminarization due to external active influence
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 3
EP  - 13
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_3_a0/
LA  - ru
ID  - MM_2014_26_3_a0
ER  - 
%0 Journal Article
%A I. Yu. Kudryashov
%A A. E. Lutsky
%T Numerical modeling of flow turbulization and relaminarization due to external active influence
%J Matematičeskoe modelirovanie
%D 2014
%P 3-13
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_3_a0/
%G ru
%F MM_2014_26_3_a0
I. Yu. Kudryashov; A. E. Lutsky. Numerical modeling of flow turbulization and relaminarization due to external active influence. Matematičeskoe modelirovanie, Tome 26 (2014) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/MM_2014_26_3_a0/

[1] V. I. Kornilov, “Problemy snizheniya turbulentnogo treniya aktivnymi i passivnymi metodami (Obzor)”, Teplofizika i aeromekhanika, 12:2 (2005), 183–208

[2] O. B. Larin, V. A. Levin, “Otryv laminarnogo sverkhzvukovogo pogranichnogo sloya s istochnikom energovydeleniya”, Pisma v zhurnal tekhnicheskoi fiziki, 34:5 (2008), 1–6 | MR

[3] J. R. Edwards, S. Chandra, “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields”, AIAA Journal, 34:4 (1996), 756–763 | DOI

[4] I. Yu. Kudryashov, A. E. Lutskii, “Modelirovanie turbulentnogo otryvnogo transzvukovogo obtekaniya tel vrascheniya”, Matem. modelirovanie, 23:5 (2011), 71–80 | MR | Zbl

[5] I. Yu. Kudryashov, A. E. Lutskii, “Adaptatsiya koda dlya rascheta techenii vyazkikh zhidkostei pod gibridnye vychislitelnye sistemy na baze CUDA-MPI”, Matem. modelirovanie, 24:7 (2012), 33–44 | MR | Zbl

[6] R. B. Langtry, F. R. Menter, Overview of Industrial Transition Modelling in CFX, ANSYS Technical report, 2006

[7] F. R. Menter, R. B. Langtry, Transition Modelling for Turbomachinery Flows, Low Reynolds Number Aerodynamics and Transition, ed. Mustafa Serdar Genc, InTech., 2012

[8] E. R. Van Driest, C. B. Blumer, “Oundary Layer Transition: Freestream Turbulence and Pressure Gradient Effects”, AIAA Journal, 1:6 (1963), 1303–1306 | DOI | Zbl

[9] F. R. Menter, T. Esch, S. Kubacki, “Transition Modelling Based on Local Variables”, 5th International Symposium on Engineering Turbulence Modelling and Measurements (Mallorca, Spain, 2002)

[10] F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[11] D. C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc., 1994

[12] S. M. Aulchenko, V. P. Zamuraev, A. P. Kalinina, “Upravlenie transzvukovym potokom s pomoschyu energeticheskogo lokalnogo vozdeistviya”, ZhTF, 81:11 (2011), 13–22