Selection of an optimal numerical scheme for simulation system of the Landau--Lifshitz equations considering temperature fluctuations
Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 33-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

To create a variety of devices based on magnetic materials it is often necessary to conduct a large-scale simulation of different magnetic phenomena. The most appropriate is the so-called micromagnetic modeling based on a system of Landau–Lifshitz equations in which the evolution of the magnetic moments of individual particles is studied. Although this topic has been widely discussed, the question of taking into account the temperature fluctuations, which plays a key role in the description of phase transitions and the transition of the system from a state of unstable equilibrium during magnetization reversal, remains open. Accounting for temperature fluctuations imposes strong constraints on the intensity of the parasitic energy source generated by numerical scheme which in turn leads to substantial restrictions on the time step and reduce the count rate. In the paper two explicit numerical schemes have been proposed which are based on the analytic solution of the simplified problem of the evolution of magnetic moments of infinite sample with a body-centered cubic lattice in the spatially homogeneous case. New-constructed numerical schemes have been compared with classical Runge-Kutta methods for the initial conditions of the form of the Bloch domain wall, Neel domain wall and random initial conditions for a finite cylindrical sample. It is shown that one of the schemes is optimal in terms of maximizing the counting rate having fixed intensity of the source or drain of.
Keywords: Landau–Lifshitz equation, explicit methods, modeling magnetic materials.
@article{MM_2014_26_2_a3,
     author = {E. Zipunova and A. Ivanov},
     title = {Selection of an optimal numerical scheme for simulation system of the {Landau--Lifshitz} equations considering temperature fluctuations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--49},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_2_a3/}
}
TY  - JOUR
AU  - E. Zipunova
AU  - A. Ivanov
TI  - Selection of an optimal numerical scheme for simulation system of the Landau--Lifshitz equations considering temperature fluctuations
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 33
EP  - 49
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_2_a3/
LA  - ru
ID  - MM_2014_26_2_a3
ER  - 
%0 Journal Article
%A E. Zipunova
%A A. Ivanov
%T Selection of an optimal numerical scheme for simulation system of the Landau--Lifshitz equations considering temperature fluctuations
%J Matematičeskoe modelirovanie
%D 2014
%P 33-49
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_2_a3/
%G ru
%F MM_2014_26_2_a3
E. Zipunova; A. Ivanov. Selection of an optimal numerical scheme for simulation system of the Landau--Lifshitz equations considering temperature fluctuations. Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 33-49. http://geodesic.mathdoc.fr/item/MM_2014_26_2_a3/

[1] Zvezdin A. K., Zvezdin K. A., Khvalkovskii A. V., “Obobschennoe uravnenie Landau–Lifshitsa i protsessy perenosa spinovogo momenta v magnitnykh nanostrukturakh”, Uspekhi fizicheskikh nauk, 178:4 (2008), 436–442 | DOI

[2] Khubert A., Teoriya domennykh granits v uporyadochennykh sredakh, Mir, M., 1977, 306 pp.

[3] LaBonte A. E., “Two dimensional Bloch type domain walls in ferromagnetic films”, J. Appl. Phys., 40 (1969), 2450–2458 | DOI

[4] Kosavisutte K., Hayashi N., “Acceleration of micromagnetic calculation based on LaBonte's iteration”, Jpn. J. Appl. Phys., 34 (1995), 5599–5605 | DOI

[5] Hayashi N., Kosavisutte K., Nakatani Y., “Micromagnetic calculation of domain structure in thin magnetic film based on improved LaBonte method”, IEEE Trans. On Magn., 33 (1997), 4164–4166 | DOI

[6] Zvezdin A. K., Zvezdin K. A., Khvalskii A. V., “Obobschennoe uravnenie Landau–Lifshitsa i protsessy perenosa spinovogo momenta v magnitnykh nanostrukturakh”, Fizika tverdogo tela, 43:11 (2001), 2030–2034

[7] Nakatani Y., Uesaka Y., Haiashi N., “Direct solution of Landau–Lifshitz–Gilbert equation for micromagnetics”, Jpn. J. Appl. Phys., 28 (1989), 2485–2507 | DOI

[8] Giles R., Kotiuga P., Humphrey F., “Three-dimensional micromagnetic simulation on the connection machine”, J. Appl. Phys., 67 (1990), 5821–5829 | DOI

[9] Shir C. C., “Computation of the micromagnetic dinamics in domain wall”, J. Appl. Phys., 49 (1978), 3413–3421 | DOI

[10] Schrayer N. L., Walker L. R., “The motion of 180 domain walls”, J. Appl. Phys., 45 (1974), 5406–5421 | DOI

[11] Yuan S. W., Bertram H. N., “Domain wall dynamic instability”, J. Appl. Phys., 69 (1991), 5974–5976 | DOI

[12] Filippov B. N., Korzunin L. G., “Nelineinaya dinamika vikhrevoi domennoi granitsy v magnitnykh plenkakh s ploskostnoi anizotropiei”, Fizika tverdogo tela, 38 (1996), 2442–2450

[13] Antonov L. I., Osipov S. G., Ternovskii V. V., Khapaev M. M., “O singulyarnykh resheniyakh zadachi mikromagnetizma”, FMM, 64:2 (1987), 254–259

[14] Osipov S. G., Khapaev M. M., “Dinamika dvumernoi domennoi granitsy v ferromagnitnoi plenke s odnoosnoi anizotropiei”, ZhETF, 90:4(10) (1990), 1354–1363

[15] Usov N. A., Peschany S. E., “Flower state micromagnetic structure in fine cylindrical particles”, JMMM, 130 (1994), 275–287 | DOI

[16] Savchenko L. L., Chetkin M. V., Bondarenko V. B., “Three-dimentional dynamics of solitary vertical Bloch lines in domain walls on garnets”, JMMM, 183 (1998), 313–328 | DOI

[17] Levchenko V. D., Morozov A. I., Sigov A. S., Sigov Yu. S., ““Neobychnye” domennye stenki v multisloyakh ferromagnetik–sloistyi antiferromagnetik”, ZhETF, 114:11 (1998), 1817–1826

[18] Levchenko V. D., Morozov A. I., Sigov A. S., “Fazovaya diagramma tonkoi ferromagnitnoi plenki na poverkhnosti antiferromagnetika”, Pisma v ZhETF, 71:9 (2000), 544–549

[19] Levchenko V. D., Morozov A. I., Sigov A. S., “Odnonapravlennaya anizotropiya i sherokhovatost granitsy razdela ferromagnetik–antiferromagnetik”, FTT, 44:1 (2002), 128–134

[20] Levchenko V. D., Morozov A. I., Sigov A. S., “Fazovaya diagramma mnogosloinykh magnitnykh struktur”, ZhETF, 121:5 (2002), 1149–1156

[21] Popkov A. F., Vorotnikova N. V., Polozov A. Yu., “Chislennoe integrirovanie uravnenii Landau–Lifshitsa–Gilberta”, Matematicheskoe modelirovanie, 11:9 (1999), 54–65

[22] Levchenko V. D., “Asinkhronnye parallelnye algoritmy kak sposob dostizheniya effektivnosti vychislenii”, Informatsionnye tekhnologii i vychislitelnye sistemy, 2005, no. 1, 68–75

[23] Sun J. Z., “Spin angular momentum transfer in current-perpendicular nanomagnetic junctions”, IBM J. RES DEV, 50:1 (2006), 81–100 | DOI

[24] Ivanov A. V., “Kineticheskoe modelirovanie dinamiki magnetikov”, Matematicheskoe modelirovanie, 19:10 (2007), 89–104 | MR | Zbl

[25] Zubov V. I., “Nesimmetrizovannye funktsii raspredeleniya i samosoglasovannaya teoriya silno angarmonicheskikh kristallov”, Vestnik RUDN, seriya Fizika, 2003, no. 11, 119–141

[26] Klimontovich Yu. L., Statisticheskaya teoriya otkrytykh sistem, TOO YaNUS, M., 1995

[27] Zmievskaya G. I., “Chislennye stokhasticheskie modeli neravnovesnykh protsessov”, Matematicheskoe modelirovanie, 8:11 (1996), 3–40 | MR

[28] Zmievskaya G. I., “Stokhasticheskie analogi neravnovesnykh stolknovitelnykh protsessov”, Fizika plazmy, 23:4 (1997), 45–60

[29] Dmitriev A. V., Ivanov A. V., Khokhlov A. R., “Numerical simulation of light propagation through a diffuser”, Journal of Mathematical Sciences, 172:6 (2011), 782–787 | DOI | MR | Zbl