Polydisperse fibrous piezoelectric material with inverse polarization of phases in variation electric field
Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 24-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical decisions for effective constants of a transversal-isotropic fibrous piezoelectric material with inverse polarization of the one-type phases taking into account conductivity and maxwell-wagner relaxation are received. The numerical analysis of unique dependences of the real and imaginary parts of effective constants of the composite from a polymeric piezoelectric material PVF from a volume fraction of fibers and the frequency of electric field is carried out. New effects are revealed: significant increase in piezosensitivity, dielectric permeability, conductivity and longitudinal module of shear.
Keywords: piezocomposite, electroelasticity, maxwell-wagner relaxation, effective properties.
@article{MM_2014_26_2_a2,
     author = {A. A. Pan'kov},
     title = {Polydisperse fibrous piezoelectric material with inverse polarization of phases in variation electric field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--32},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_2_a2/}
}
TY  - JOUR
AU  - A. A. Pan'kov
TI  - Polydisperse fibrous piezoelectric material with inverse polarization of phases in variation electric field
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 24
EP  - 32
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_2_a2/
LA  - ru
ID  - MM_2014_26_2_a2
ER  - 
%0 Journal Article
%A A. A. Pan'kov
%T Polydisperse fibrous piezoelectric material with inverse polarization of phases in variation electric field
%J Matematičeskoe modelirovanie
%D 2014
%P 24-32
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_2_a2/
%G ru
%F MM_2014_26_2_a2
A. A. Pan'kov. Polydisperse fibrous piezoelectric material with inverse polarization of phases in variation electric field. Matematičeskoe modelirovanie, Tome 26 (2014) no. 2, pp. 24-32. http://geodesic.mathdoc.fr/item/MM_2014_26_2_a2/

[1] Afonin S. M., “Uprugie podatlivosti, mekhanicheskie i regulirovochnye kharakteristiki sostavnykh pezopreobrazovatelei”, Izv. RAN. MTT, 2007, no. 1, 51–58 | MR

[2] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982, 334 pp.

[3] Pankov A. A., “Koeffitsienty elektromagnitnoi svyazi pezoaktivnykh polidispersnykh struktur”, Matematicheskoe modelirovanie, 24:10 (2012), 80–88 | MR | Zbl

[4] Pan'kov A. A., “Piezoactive unidirectionally fibrous polydisperse composite”, Mechanics of Composite Materials, 48:6 (2013), 603–610 | DOI

[5] Turik A. V., Radchenko G. S., “Maksvell-vagnerovskaya relaksatsiya uprugikh konstant v sloistykh polyarnykh dielektrikakh”, Fizika tverdogo tela, 45:6 (2003), 1013–1016 | MR

[6] Turik A. V., Radchenko G. S., “Gigantskii pezoelektricheskii effekt v sloistykh kompozitakh segnetoelektrik-polimer”, Fizika tverdogo tela, 45:9 (2003), 1676–1679

[7] Mezon U., Pezoelektricheskie kristally i ikh primeneniya v ultraakustike, Izd-vo inostr. liter., M., 1952, 448 pp.

[8] Volkov S. D., Stavrov V. P., Statisticheskaya mekhanika kompozitnykh materialov, Izd-vo Belorus. gos. un-ta, Minsk, 1978, 208 pp.

[9] Shermergor T. D., Teoriya uprugosti mikroneodnorodnykh sred, Nauka, M., 1977, 399 pp.

[10] Sessler G. M., “Piezoelectricity in polyvinylidenefluoride”, J. Acoust. Soc. Amer., 70:6 (1981), 1596–1608 | DOI