Mathematical modeling of memristor in the presence of noise
Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 122-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the modeling of memristor in the presence of noise. A short review of existing models is given. A stochastic model of memristor, which allows investigating its behavior in the presence of noise, is proposed. The results of numerical simulation of a memristor circuit under the influence of sinusoidal signal and noise are given. It is shown that for certain values of model parameters, the phenomenon of stochastic resonance occurs which lead to the appearance of memristive properties, not detected in the absence of noise.
Keywords: memristor, stochastic resonance, stochastic memory element.
@article{MM_2014_26_1_a9,
     author = {V. A. Vasil'ev and P. S. Chernov},
     title = {Mathematical modeling of memristor in the presence of noise},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a9/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
AU  - P. S. Chernov
TI  - Mathematical modeling of memristor in the presence of noise
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 122
EP  - 132
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a9/
LA  - ru
ID  - MM_2014_26_1_a9
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%A P. S. Chernov
%T Mathematical modeling of memristor in the presence of noise
%J Matematičeskoe modelirovanie
%D 2014
%P 122-132
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_1_a9/
%G ru
%F MM_2014_26_1_a9
V. A. Vasil'ev; P. S. Chernov. Mathematical modeling of memristor in the presence of noise. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 122-132. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a9/

[1] Carusela M. F., Perazzo R. P. J., Romanelli L., “Stochastic resonant memory storage device”, Physical Review E, 64 (2001), 31101 | DOI

[2] Chua L. O., “Memristor — The Missing Circuit Element”, IEEE Trans. Circuit Theory, 18 (1971), 507–519 | DOI | MR

[3] Strukov D. B., Snider G. S., Stewart D. R., Williams R. S., “The missing memristor found”, Nature, 453 (2008), 80–83 | DOI

[4] Ho Y., Huang G. M., Li P., “Nonvolatile Memristor Memory: Device Characteristics and Design Implications”, Proceedings of the International Conference on Computer-Aided Design (2009), 485–490

[5] Pershin Y. V., Di Ventra M., “Memory Effects in Complex Materials and Nanoscale Systems”, Advances in Physics, 60:2 (2011), 145–227 | DOI

[6] Borghetti J., Snider G. S., Kuekes P. J., Yang J. J., Stewart D. R., Williams R. S., “Memristive Switches Enable 'Stateful' Logic Operations via Material Implication”, Nature, 464 (2010), 873–876 | DOI

[7] Chua L. O., “Resistance switching memories are memristors”, Applied Physics A, 102 (2011), 765–783 | DOI

[8] Wang W., Yu Q., Xu C., Chui Y., “Study of filter characteristics based on PWL memristor”, ICCCAS (2009), 969–973

[9] Pershin Y. V., Di Ventra M., “Experimental demonstration of associative memory with memristive neural networks”, Neural Networks, 23:7 (2010), 881–886 | DOI

[10] Sun W., Li C., Yu J., “A memristor based chaotic oscillator”, ICCCAS (2009), 955–957