Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_1_a7, author = {L. M. Skvortsov and O. S. Kozlov}, title = {Efficient implementation of diagonally implicit {Runge--Kutta} methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {96--108}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a7/} }
L. M. Skvortsov; O. S. Kozlov. Efficient implementation of diagonally implicit Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a7/
[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[2] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff O. D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[3] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR | Zbl
[4] Kvœrnø A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR | Zbl
[5] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR
[6] Skvortsov L. M., “Diagonalno neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR
[7] Berzins M., Furzeland R. M., “An adaptive theta method for the solution of stiff and nonstiff differential equations”, Appl. Numer. Math., 9:1 (1992), 1–19 | DOI | MR | Zbl
[8] Olsson H., Söderlind G., “Stage value predictors and efficient Newton iterations in implicit Runge–Kutta methods”, SIAM J. Sci. Comput., 20:1 (1998), 185–202 | DOI | MR
[9] Kulikov G. Yu., “Chislennoe reshenie zadachi Koshi dlya sistemy differentsialno-algebraicheskikh uravnenii s pomoschyu neyavnykh metodov Runge–Kutty s netrivialnym prediktorom”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 68–84 | MR | Zbl
[10] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018
[11] Skvortsov L. M., “Effektivnaya realizatsiya neyavnykh metodov Runge–Kutty vtorogo poryadka”, Matem. modelirovanie, 25:5 (2013), 15–28 | MR | Zbl
[12] Kulikov G. Yu., “Teoremy skhodimosti dlya iteratsionnykh metodov Runge–Kutty s postoyannym shagom integrirovaniya”, Zh. vychisl. matem. i matem. fiz., 36:8 (1996), 73–89 | MR | Zbl
[13] Jackson K. R., Kvœrnø A., Nørsett S. P., “An analysis of the order of Runge–Kutta methods that use an iterative scheme to compute their internal stage values”, BIT, 36:4 (1996), 713–765 | DOI | MR | Zbl
[14] Kozlov O. S., Kondakov D. E., Skvortsov L. M. i dr., “Programmnyi kompleks dlya issledovaniya dinamiki i proektirovaniya tekhnicheskikh sistem”, Informatsionnye tekhnologii, 2005, no. 9, 20–25
[15] Kozlov O. S., Kondakov D. E., Skvortsov L. M. i dr., Programmnyi kompleks tekhnicheskikh ustroistvakh, http://model.exponenta.ru/mvtu/20050615.html
[16] Hairer R., Lubich Ch., Roche M., The numerical solution of differential-algebraic system Runge–Kutta methods, Lecture Notes in Math., 1409, Springer-Verlag, Berlin, 1989, 139 pp. | MR | Zbl
[17] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya differentsialno-algebraicheskikh uravnenii indeksov 2 i 3”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1047–1059 | MR | Zbl
[18] Mazzia F., Magherini C., Test set for initial value problem solvers, release 2.4, , 2008 http://www.dm.uniba.it/t̃estset/report
[19] http://num-lab.zib.de/public/odelab/
[20] Brugnano L., Magherini C., Mugnai F., “Blended implicit methods for DAE problems”, J. Comput. Appl. Math., 189:1–2 (2006), 34–50 | DOI | MR | Zbl
[21] http://web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm