Efficient implementation of diagonally implicit Runge--Kutta methods
Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Efficient schemes for the implementation of diagonally implicit Runge-Kutta methods are considered. Methods of 3-rd and 4-th orders are implemented. They are compared with known implicit solvers when applied to stiff and differential-algebraic problems.
Keywords: diagonally implicit Runge–Kutta methods, stiff problems, differential-algebraic problems
Mots-clés : efficient implementation.
@article{MM_2014_26_1_a7,
     author = {L. M. Skvortsov and O. S. Kozlov},
     title = {Efficient implementation of diagonally implicit {Runge--Kutta} methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a7/}
}
TY  - JOUR
AU  - L. M. Skvortsov
AU  - O. S. Kozlov
TI  - Efficient implementation of diagonally implicit Runge--Kutta methods
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 96
EP  - 108
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a7/
LA  - ru
ID  - MM_2014_26_1_a7
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%A O. S. Kozlov
%T Efficient implementation of diagonally implicit Runge--Kutta methods
%J Matematičeskoe modelirovanie
%D 2014
%P 96-108
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_1_a7/
%G ru
%F MM_2014_26_1_a7
L. M. Skvortsov; O. S. Kozlov. Efficient implementation of diagonally implicit Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a7/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[2] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff O. D.E.'s”, SIAM J. Numer. Anal., 14:6 (1977), 1006–1021 | DOI | MR | Zbl

[3] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR | Zbl

[4] Kvœrnø A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR | Zbl

[5] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR

[6] Skvortsov L. M., “Diagonalno neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR

[7] Berzins M., Furzeland R. M., “An adaptive theta method for the solution of stiff and nonstiff differential equations”, Appl. Numer. Math., 9:1 (1992), 1–19 | DOI | MR | Zbl

[8] Olsson H., Söderlind G., “Stage value predictors and efficient Newton iterations in implicit Runge–Kutta methods”, SIAM J. Sci. Comput., 20:1 (1998), 185–202 | DOI | MR

[9] Kulikov G. Yu., “Chislennoe reshenie zadachi Koshi dlya sistemy differentsialno-algebraicheskikh uravnenii s pomoschyu neyavnykh metodov Runge–Kutty s netrivialnym prediktorom”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 68–84 | MR | Zbl

[10] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018

[11] Skvortsov L. M., “Effektivnaya realizatsiya neyavnykh metodov Runge–Kutty vtorogo poryadka”, Matem. modelirovanie, 25:5 (2013), 15–28 | MR | Zbl

[12] Kulikov G. Yu., “Teoremy skhodimosti dlya iteratsionnykh metodov Runge–Kutty s postoyannym shagom integrirovaniya”, Zh. vychisl. matem. i matem. fiz., 36:8 (1996), 73–89 | MR | Zbl

[13] Jackson K. R., Kvœrnø A., Nørsett S. P., “An analysis of the order of Runge–Kutta methods that use an iterative scheme to compute their internal stage values”, BIT, 36:4 (1996), 713–765 | DOI | MR | Zbl

[14] Kozlov O. S., Kondakov D. E., Skvortsov L. M. i dr., “Programmnyi kompleks dlya issledovaniya dinamiki i proektirovaniya tekhnicheskikh sistem”, Informatsionnye tekhnologii, 2005, no. 9, 20–25

[15] Kozlov O. S., Kondakov D. E., Skvortsov L. M. i dr., Programmnyi kompleks tekhnicheskikh ustroistvakh, http://model.exponenta.ru/mvtu/20050615.html

[16] Hairer R., Lubich Ch., Roche M., The numerical solution of differential-algebraic system Runge–Kutta methods, Lecture Notes in Math., 1409, Springer-Verlag, Berlin, 1989, 139 pp. | MR | Zbl

[17] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya differentsialno-algebraicheskikh uravnenii indeksov 2 i 3”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1047–1059 | MR | Zbl

[18] Mazzia F., Magherini C., Test set for initial value problem solvers, release 2.4, , 2008 http://www.dm.uniba.it/t̃estset/report

[19] http://num-lab.zib.de/public/odelab/

[20] Brugnano L., Magherini C., Mugnai F., “Blended implicit methods for DAE problems”, J. Comput. Appl. Math., 189:1–2 (2006), 34–50 | DOI | MR | Zbl

[21] http://web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm