Parallel multigrid method for solving elliptic equations
Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 55-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proposed algorithm represents an efficient parallel implementation of the multigrid method of R. P. Fedorenko and is intended for solving three-dimensional elliptic equations. Scalability is provided by the usage of the Chebyshev iteration for solution of the coarsest grid equations and for construction of the smoothing procedures. The calculation results are given; they confirm the efficiency of the algorithm and scalability of the parallel code.
Keywords: numerical simulation, three-dimensional elliptic equations, multigrid, Chebyshev iteration
Mots-clés : parallel implementation.
@article{MM_2014_26_1_a4,
     author = {V. T. Zhukov and N. D. Novikova and O. B. Feodoritova},
     title = {Parallel multigrid method for solving elliptic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. D. Novikova
AU  - O. B. Feodoritova
TI  - Parallel multigrid method for solving elliptic equations
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 55
EP  - 68
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/
LA  - ru
ID  - MM_2014_26_1_a4
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. D. Novikova
%A O. B. Feodoritova
%T Parallel multigrid method for solving elliptic equations
%J Matematičeskoe modelirovanie
%D 2014
%P 55-68
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/
%G ru
%F MM_2014_26_1_a4
V. T. Zhukov; N. D. Novikova; O. B. Feodoritova. Parallel multigrid method for solving elliptic equations. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/

[1] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[2] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matematicheskikh nauk, XXVIII:2(170) (1973), 129–195 | Zbl

[3] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994, 528 pp.

[4] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. I: Osnovnye elementy algoritma”, Preprinty IPM im. M. V. Keldysha RAN, 2012, 30, 32 pp.

[5] Zhukov V. T., Novikova N. D., Feodoritova O. B., “Parallelnyi mnogosetochnyi metod dlya raznostnykh ellipticheskikh uravnenii. Anizotropnye zadachi”, Preprinty IPM im. M. V. Keldysha RAN, 2012, 076, 36 pp.

[6] Zhukov V. T., Feodoritova O. B., Yang D. P., “Iteratsionnye algoritmy dlya skhem konechnykh elementov vysokogo poryadka”, Matem. modelirovanie, 16:7 (2004), 117–128 | Zbl

[7] Zhukov V. T., Feodoritova O. B., “Mnogosetochnyi metod dlya konechno-elementnykh diskretizatsii uravnenii aerodinamiki”, Matem. modelirovanie, 23:1 (2011), 115–131 | Zbl

[8] Trottenberg U., Oosterlee C. W., Schuller A., Multigrid, Academic Press, 2001 | MR | Zbl

[9] Zhukov V. T., “O yavnykh metodakh chislennogo integrirovaniya dlya parabolicheskikh uravnenii”, Matem. modelirovanie, 22:10 (2010), 127–158 | MR | Zbl

[10] Lokutsievskii V. O., Lokutsievskii O. V., “O chislennom reshenii kraevykh zadach dlya uravnenii parabolicheskogo tipa”, Dokl. AN SSSR, 291:3 (1986), 540–544 | MR

[11] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR

[12] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp. | MR

[13] Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, Ulrike Meier Yang, “Multigrid Smoothers for Ultraparallel Computing”, SIAM J. Sci. Comput., 33:5 (2011), 2864–2887 | DOI | MR | Zbl