Parallel multigrid method for solving elliptic equations
Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 55-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Proposed algorithm represents an efficient parallel implementation of the multigrid method of R. P. Fedorenko and is intended for solving three-dimensional elliptic equations. Scalability is provided by the usage of the Chebyshev iteration for solution of the coarsest grid equations and for construction of the smoothing procedures. The calculation results are given; they confirm the efficiency of the algorithm and scalability of the parallel code.
Keywords: numerical simulation, three-dimensional elliptic equations, multigrid, Chebyshev iteration
Mots-clés : parallel implementation.
@article{MM_2014_26_1_a4,
     author = {V. T. Zhukov and N. D. Novikova and O. B. Feodoritova},
     title = {Parallel multigrid method for solving elliptic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--68},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. D. Novikova
AU  - O. B. Feodoritova
TI  - Parallel multigrid method for solving elliptic equations
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 55
EP  - 68
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/
LA  - ru
ID  - MM_2014_26_1_a4
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. D. Novikova
%A O. B. Feodoritova
%T Parallel multigrid method for solving elliptic equations
%J Matematičeskoe modelirovanie
%D 2014
%P 55-68
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/
%G ru
%F MM_2014_26_1_a4
V. T. Zhukov; N. D. Novikova; O. B. Feodoritova. Parallel multigrid method for solving elliptic equations. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 55-68. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a4/