Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_1_a3, author = {Stanislav A. Medin and Anatoly N. Parshikov}, title = {Mesomechanical simulation of shock compaction of porous aluminum}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {42--54}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a3/} }
TY - JOUR AU - Stanislav A. Medin AU - Anatoly N. Parshikov TI - Mesomechanical simulation of shock compaction of porous aluminum JO - Matematičeskoe modelirovanie PY - 2014 SP - 42 EP - 54 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a3/ LA - ru ID - MM_2014_26_1_a3 ER -
Stanislav A. Medin; Anatoly N. Parshikov. Mesomechanical simulation of shock compaction of porous aluminum. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 42-54. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a3/
[1] Herrmann W., “A Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials”, J. Appl. Phys., 40 (1969), 2490 | DOI
[2] Erhart P. et al., “Atomistic mechanism of shock-induced void collapse in nanoporous metals”, Phys. Rev. B, 72 (2005), 052104 | DOI
[3] Kanel G. I. et al., “Computer simulation of the heterogeneous materials response to the impact”, Int. J. Impact Eng., 17 (1995), 455 | DOI
[4] Thoma K. et al., “Mesomechanical modeling of concrete shock response experiments and linking to macromechanics by numerical analysis”, Proceedinds of the European Conference on Computational Mechanics (1999, Munich, Germany)
[5] Shuvalov V. V., “Numerical Simulations of Shock Wave Propagation in Porous Targets”, Int. J. Impact Eng., 29 (2003), 639 | DOI
[6] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 2008, 656 pp.
[7] Trunin R. F., Krupnikov K. K., Simakov G. V., Funtikov A. I., “Udarno-volnovoe szhatie poristykh metallov”, Udarnye volny i ekstremalnye sostoyaniya veschestva, eds. V. E. Fortov, L. V. Altshuler, R. F. Trunin, A. I. Funtikov, Nauka, M., 2000, 121 pp.
[8] Seitz M. W., Skews B. W., “Effect of compressible foam properties on pressure amplification during shock wave impact”, Shock Waves, 15 (2006), 177 | DOI
[9] Zhao H. et al., “Perforation of aluminium foam core sandwich panels under impact loading”, Int. J. Impact Eng., 34 (2007), 1147 | DOI
[10] Ioilev A. G. et al., “Numerical model of ductile fracture kinetics: comparison of results of 2-D simulations to experimental data”, Int. J. Impact Eng., 29 (2003), 369 | DOI
[11] Boade R. R., “Compression of porous copper by shock waves”, J. Appl. Phys., 39 (1968), 5693 | DOI
[12] Boade R. R., “Dynamic Compression of Porous Tungsten”, J. Appl. Phys., 40 (1969), 3781 | DOI
[13] Radford D. D. et al., “The use of metal foam projectiles to simulate shock loading on a structure”, Int. J. Impact Eng., 31 (2005), 1152 | DOI
[14] Bonnan S. et al., “Experimental characterization of quasi static and shock wave behavior of porous aluminum”, J. Appl. Phys., 83 (1998), 5741 | DOI
[15] Parshikov A. N., Comput. Math. Math. Phys., 39 (1999), 1173 (English translation) | MR | Zbl
[16] Parshikov A. N. et al., “Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation test at moderate projectile velocities”, Int. J. Impact Eng., 24 (2000), 779 | DOI
[17] Parshikov A. N., Medin S. A., “Smoothed Particle Hydrodynamics Using Interparticle Contact Algorithms”, J. Comput. Phys., 180 (2002), 358 | DOI | Zbl
[18] Meider Ch., Chislennoe modelirovanie detonatsii, Mir, M., 1985, 384 pp.
[19] Walsh L. M., Christian R. H., “Equation of State of Metals from Shock Wave Measurements”, Phys. Rev., 97:6 (1955), 1544 | DOI
[20] Mak-Kuin R. i dr., “Uravnenie sostoyaniya tverdykh tel po rezultatam issledovanii udarnykh voln”, Vysokoskorostnye udarnye yavleniya, ed. Kinslou R., Mir, M., 1973, 533 pp.