Mesomechanical simulation of shock compaction of porous aluminum
Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 42-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mesomechanical simulation of porous aluminum shock loading is performed by means of a modified 2D SPH method applied to thermo-elastic-plastic medium. The periodic structure of porous material is presented explicitly and the properties of solid aluminum are used. The shock loading is simulated by the impact of a porous plate against a rigid wall. The material flow fields show major features of loading dynamics: multiwave shock structure at low shock intensities, hydrodynamics of the pore collapse in a strong shock and formation of the two-step material compression at the shock front, the generation of pressure oscillations behind the shock front and the influence of heat conduction on the oscillation attenuation. The computed Hugoniot is well fitted with the experimental data.
Keywords: SPH (Smoothed Particle Hydrodynamics), porous aluminum, shock loading, Hugoniot curve.
Mots-clés : oscillations
@article{MM_2014_26_1_a3,
     author = {Stanislav A. Medin and Anatoly N. Parshikov},
     title = {Mesomechanical simulation of shock compaction of porous aluminum},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {42--54},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a3/}
}
TY  - JOUR
AU  - Stanislav A. Medin
AU  - Anatoly N. Parshikov
TI  - Mesomechanical simulation of shock compaction of porous aluminum
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 42
EP  - 54
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a3/
LA  - ru
ID  - MM_2014_26_1_a3
ER  - 
%0 Journal Article
%A Stanislav A. Medin
%A Anatoly N. Parshikov
%T Mesomechanical simulation of shock compaction of porous aluminum
%J Matematičeskoe modelirovanie
%D 2014
%P 42-54
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_1_a3/
%G ru
%F MM_2014_26_1_a3
Stanislav A. Medin; Anatoly N. Parshikov. Mesomechanical simulation of shock compaction of porous aluminum. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 42-54. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a3/

[1] Herrmann W., “A Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials”, J. Appl. Phys., 40 (1969), 2490 | DOI

[2] Erhart P. et al., “Atomistic mechanism of shock-induced void collapse in nanoporous metals”, Phys. Rev. B, 72 (2005), 052104 | DOI

[3] Kanel G. I. et al., “Computer simulation of the heterogeneous materials response to the impact”, Int. J. Impact Eng., 17 (1995), 455 | DOI

[4] Thoma K. et al., “Mesomechanical modeling of concrete shock response experiments and linking to macromechanics by numerical analysis”, Proceedinds of the European Conference on Computational Mechanics (1999, Munich, Germany)

[5] Shuvalov V. V., “Numerical Simulations of Shock Wave Propagation in Porous Targets”, Int. J. Impact Eng., 29 (2003), 639 | DOI

[6] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 2008, 656 pp.

[7] Trunin R. F., Krupnikov K. K., Simakov G. V., Funtikov A. I., “Udarno-volnovoe szhatie poristykh metallov”, Udarnye volny i ekstremalnye sostoyaniya veschestva, eds. V. E. Fortov, L. V. Altshuler, R. F. Trunin, A. I. Funtikov, Nauka, M., 2000, 121 pp.

[8] Seitz M. W., Skews B. W., “Effect of compressible foam properties on pressure amplification during shock wave impact”, Shock Waves, 15 (2006), 177 | DOI

[9] Zhao H. et al., “Perforation of aluminium foam core sandwich panels under impact loading”, Int. J. Impact Eng., 34 (2007), 1147 | DOI

[10] Ioilev A. G. et al., “Numerical model of ductile fracture kinetics: comparison of results of 2-D simulations to experimental data”, Int. J. Impact Eng., 29 (2003), 369 | DOI

[11] Boade R. R., “Compression of porous copper by shock waves”, J. Appl. Phys., 39 (1968), 5693 | DOI

[12] Boade R. R., “Dynamic Compression of Porous Tungsten”, J. Appl. Phys., 40 (1969), 3781 | DOI

[13] Radford D. D. et al., “The use of metal foam projectiles to simulate shock loading on a structure”, Int. J. Impact Eng., 31 (2005), 1152 | DOI

[14] Bonnan S. et al., “Experimental characterization of quasi static and shock wave behavior of porous aluminum”, J. Appl. Phys., 83 (1998), 5741 | DOI

[15] Parshikov A. N., Comput. Math. Math. Phys., 39 (1999), 1173 (English translation) | MR | Zbl

[16] Parshikov A. N. et al., “Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation test at moderate projectile velocities”, Int. J. Impact Eng., 24 (2000), 779 | DOI

[17] Parshikov A. N., Medin S. A., “Smoothed Particle Hydrodynamics Using Interparticle Contact Algorithms”, J. Comput. Phys., 180 (2002), 358 | DOI | Zbl

[18] Meider Ch., Chislennoe modelirovanie detonatsii, Mir, M., 1985, 384 pp.

[19] Walsh L. M., Christian R. H., “Equation of State of Metals from Shock Wave Measurements”, Phys. Rev., 97:6 (1955), 1544 | DOI

[20] Mak-Kuin R. i dr., “Uravnenie sostoyaniya tverdykh tel po rezultatam issledovanii udarnykh voln”, Vysokoskorostnye udarnye yavleniya, ed. Kinslou R., Mir, M., 1973, 533 pp.