Application of the RKDG method for gas dynamics problems
Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 17-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In recent years the RKDG method with discontinuous basic functions which is characterized as a higher-order method is widely used. It’s known that for guaranteeing the monotony of solution obtained by this method it is necessary to use limiters especially if the solution contains big instabilities. However, application of limiters can negatively affect the accuracy of the solution. In this paper the way of saving the order of accuracy of the solution and guaranteeing the monotony is explored.
Keywords: discontinuous Galerkin method, limiters
Mots-clés : Euler equations.
@article{MM_2014_26_1_a1,
     author = {M. E. Ladonkina and O. A. Neklyudova and V. F. Tishkin},
     title = {Application of the {RKDG} method for gas dynamics problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_1_a1/}
}
TY  - JOUR
AU  - M. E. Ladonkina
AU  - O. A. Neklyudova
AU  - V. F. Tishkin
TI  - Application of the RKDG method for gas dynamics problems
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 17
EP  - 32
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_1_a1/
LA  - ru
ID  - MM_2014_26_1_a1
ER  - 
%0 Journal Article
%A M. E. Ladonkina
%A O. A. Neklyudova
%A V. F. Tishkin
%T Application of the RKDG method for gas dynamics problems
%J Matematičeskoe modelirovanie
%D 2014
%P 17-32
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_1_a1/
%G ru
%F MM_2014_26_1_a1
M. E. Ladonkina; O. A. Neklyudova; V. F. Tishkin. Application of the RKDG method for gas dynamics problems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 1, pp. 17-32. http://geodesic.mathdoc.fr/item/MM_2014_26_1_a1/

[1] Cockburn Bernardo, “An Introduction to the Discontinuous Galerkin Method for Convection — Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | DOI | MR | Zbl

[2] Rusanov V. V., “Raschet vzaimodeistviya nestatsionarnykh udarnykh voln s prepyatstviyami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 1:2 (1961), 267–279 | MR

[3] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl

[4] Galanin M. P., Savenkov E. B., Tokareva S. A., “Primenenie razryvnogo metoda Galerkina dlya chislennogo resheniya kvazilineinogo uravneniya perenosa”, Preprinty IPM im. M. V. Keldysha RAN, 2005, 105 | MR

[5] Krivodonova Lilia, “Limiters for high-order discontinuous Galerkin methods”, Journal of Computational Physics, 226 (2007), 879–896 | DOI | MR | Zbl

[6] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Fizmatlit, M., 2001

[7] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[8] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., “Issledovanie vliyaniya limitera na poryadok tochnosti resheniya razryvnym metodom Galerkina”, Preprinty IPM im. M. V. Keldysha RAN, 2012, 034

[9] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., “Issledovanie vliyaniya limitera na poryadok tochnosti resheniya razryvnym metodom Galerkina”, Matem. modelirovanie, 24:12 (2012), 124–128 | MR

[10] Ladonkina M. E., Neklyudova O. A., Tishkin V. F., “Limiter povyshennogo poryadka tochnosti dlya razryvnogo metoda Galerkina na treugolnykh setkakh”, Preprinty IPM im. M. V. Keldysha RAN, 2013, 053 | MR

[11] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes, II”, Journal of Computational Physics, 83:1 (1989), 32–78 | DOI | MR | Zbl