Output circuit of difference relationships on the base of Lagrange variation principle
Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 127-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analyses of the numerical methods of calculation of mechanics problems, based on the variation principle of Lagrange, such as the Finite Element Method (FEM) and the method of Moment Schema Finite Elements (MSFE), is given in the paper. The general formula to find the stiffness matrix of finite elements for MSFE is developed. The model of calculation of the energy functional of rectangular three-dimensional finite element, based on the variation of the problem statement, is developed.
Keywords: finite element method, method of moment schema finite elements, stiffness matrix, finite element.
Mots-clés : variation
@article{MM_2014_26_12_a9,
     author = {V. I. Mezhuyev and V. V. Lavrik},
     title = {Output circuit of difference relationships on the base of {Lagrange} variation principle},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {26},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a9/}
}
TY  - JOUR
AU  - V. I. Mezhuyev
AU  - V. V. Lavrik
TI  - Output circuit of difference relationships on the base of Lagrange variation principle
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 127
EP  - 136
VL  - 26
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_12_a9/
LA  - ru
ID  - MM_2014_26_12_a9
ER  - 
%0 Journal Article
%A V. I. Mezhuyev
%A V. V. Lavrik
%T Output circuit of difference relationships on the base of Lagrange variation principle
%J Matematičeskoe modelirovanie
%D 2014
%P 127-136
%V 26
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_12_a9/
%G ru
%F MM_2014_26_12_a9
V. I. Mezhuyev; V. V. Lavrik. Output circuit of difference relationships on the base of Lagrange variation principle. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 127-136. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a9/

[1] V. V. Kirichevskii, A. S. Sakharov, Nelineinye deformatsii termomekhaniki konstruktsii iz slaboszhimaemykh elastomerov, Budivelnik, K., 1992, 215 pp.

[2] Laevskii Yu. M., Popov P. E., Kalinkin A. A., “Modelirovanie filtratsii dvukhfaznoi zhidkosti smeshannym metodom konechnykh elementov”, Matematicheskoe modelirovanie, 22:3 (2010), 74–90

[3] Kirichevskii V. V., Metod konechnykh elementov v mekhanike elastomerov, Nauk. dumka, Kiev, 2002, 655 pp.

[4] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975, 541 pp.

[5] Sakharov A. C., “Modifikatsiya metoda Rittsa dlya rascheta massivnykh tel na osnove polinomialnykh razlozhenii s uchetom zhestkikh smeshenii”, Soprotivlenie materialov i teoriya sooruzhenii, 1974, no. 23, 61–70

[6] Vaiberg D. V., Sakharov A. S., Kirichevskii V. V., “Vyvod matritsy zhestkostnykh kharakteristik diskretnogo elementa proizvolnoi formy”, Soprotivlenie materialov i teoriya sooruzhenii, 1971, no. 14, 37–44

[7] Sakharov A. C., “Momentnaya skhema konechnykh elementov (MSKE) s uchetom zhestkikh smeschenii”, Soprotivlenie materialov i teoriya sooruzhenii, 1974, no. 24, 147–156

[8] Kirichevskii V. V., Sakharov A. S., Isakhanov G. V., “Realizatsiya metoda konechnykh elementov v raschete netonkikh plastin i obolochek slozhnoi geometrii”, Soprotivlenie materialov i teoriya sooruzhenii, 1976, no. 28, 148–162

[9] Lavrik V. V., “Instrumentalnaya sistema FORTU-FEM: struktura organizatsii i perspektivy dalneishego razvitiya”, Vestnik Khersonskogo natsionalnogo tekhnicheskogo universiteta, 2010, no. 3(39), 244–251