Mathematical modeling of bi-isotropic waveguide using the finite elements method
Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 97-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the numerical algorithm for calculating propagation constants for the spectral electromagnetic problem in the waveguide with perfectly conducting walls and bi-isotropic filling is proposed. This algorithm is based on specific generalized statement of the vector problem, and it permits to use the Lagrangian finite elements without nonphysical solutions.
Keywords: spectral electromagnetic problem, bi-isotropic waveguide, finite elements method, nonphysical solutions.
@article{MM_2014_26_12_a6,
     author = {Yu. V. Mukhartova and N. A. Bogolyubov},
     title = {Mathematical modeling of bi-isotropic waveguide using the finite elements method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {26},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a6/}
}
TY  - JOUR
AU  - Yu. V. Mukhartova
AU  - N. A. Bogolyubov
TI  - Mathematical modeling of bi-isotropic waveguide using the finite elements method
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 97
EP  - 106
VL  - 26
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_12_a6/
LA  - ru
ID  - MM_2014_26_12_a6
ER  - 
%0 Journal Article
%A Yu. V. Mukhartova
%A N. A. Bogolyubov
%T Mathematical modeling of bi-isotropic waveguide using the finite elements method
%J Matematičeskoe modelirovanie
%D 2014
%P 97-106
%V 26
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_12_a6/
%G ru
%F MM_2014_26_12_a6
Yu. V. Mukhartova; N. A. Bogolyubov. Mathematical modeling of bi-isotropic waveguide using the finite elements method. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 97-106. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a6/

[1] Bogolyubov A. N., Delitsyn A. L., Krasilnikova A. V., Minaev D. V., Sveshnikov A. G., “Matematicheskoe modelirovanie volnoveduschikh sistem na osnove metoda konechnykh raznostei”, Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, 1998, no. 5, 39–54

[2] Bogolyubov A. N., Mukhartova Yu. V., Gao Ts., “Raschet ploskoparallelnogo volnovoda s kiralnoi vstavkoi metodom smeshannykh konechnykh elementov”, Matematicheskoe modelirovanie, 25:2 (2013), 65–85

[3] Bogolyubov A. N., Mosunova N. A., “Raschet postoyannoi rasprostraneniya pryamougolnogo kiralnogo volnovoda metodom smeshannykh konechnykh elementov”, Vestnik Moskovskogo universiteta. Seriya 3. Fizika. Astronomiya, 2007, no. 3, 22–24

[4] Lindell I. V., Sihvola A. H., “Bi-isotropic constitutive relations”, Microwave and Opt. Tech. Lett., 4 (1991), 295–297 | DOI

[5] Bogoliubov A. N., Mukhartova Yu. V., Bogoliubov N. A., Tkach E. V., “Mathematical modeling of bi-isotropic waveguides using the finite elements method”, The eights international Kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves (MSMW'13) and workshop on terahertz technology (TERATECH'13), Proceedings, Section H-8 (Kharkov, Ukraine, June 23–28, 2013), 608–610