The construction of solenoidal basis for three dimensional vector tomography
Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 65-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multipole fields method based on the expansion of a vector field and the ray transform on the basis solenoidal vectors has been developed for the inversion of the ray transform of three-dimensional (3D) vector fields. The analytical expressions for the ray transform of basis vectors are given. The results of numerical simulation are presented.
Keywords: tomography, inverse problems, numerical methods, plasma diagnostics.
@article{MM_2014_26_12_a4,
     author = {A. L. Balandin},
     title = {The construction of solenoidal basis for three dimensional vector tomography},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {26},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a4/}
}
TY  - JOUR
AU  - A. L. Balandin
TI  - The construction of solenoidal basis for three dimensional vector tomography
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 65
EP  - 80
VL  - 26
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_12_a4/
LA  - ru
ID  - MM_2014_26_12_a4
ER  - 
%0 Journal Article
%A A. L. Balandin
%T The construction of solenoidal basis for three dimensional vector tomography
%J Matematičeskoe modelirovanie
%D 2014
%P 65-80
%V 26
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_12_a4/
%G ru
%F MM_2014_26_12_a4
A. L. Balandin. The construction of solenoidal basis for three dimensional vector tomography. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 65-80. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a4/

[1] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975, 436 pp.

[2] Blatt Dzh., Vaiskopf V., Teoreticheskaya yadernaya fizika, IL, M., 1954, Prilozhenie II

[3] Moses H. E., “The Use of Vector Spherical Harmonics in Global Meteorology and Aeronomy”, J. Atmospheric Sci., 31 (1974), 1490–1500 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] Hill E. H., “The theory of vector spherical harmonics”, Amer. J. Phys., 22 (1953), 211–214 | DOI

[5] Edmonds A. R., Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton, NJ, 1974, 146 pp.

[6] Hansen W. W., “A new type of expansion in radiation problem”, Phys. Rev., 47 (1935), 139–143 | DOI

[7] Stratton J. A., Electromagnetic Theory, McGrow-Hill, New York, 1941, 615 pp. | Zbl

[8] Natterer F., Wubbeling F., Mathematical Methods in Image Reconstruction, SIAM, Philadelphia, 2001, 216 pp.

[9] Cantarella J., De Turck D., Gluck H., “Vector Calculus and the Topology of Domains in 3-Space”, Amer. Math. Month., 109:5 (2002), 409–442 | DOI | Zbl

[10] Colton D., Kress R., Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1992, 334 pp. | Zbl

[11] Stein S., “Addition theorem for spherical wave functions”, Quart. Appl. Math., 19 (1961), 15–24 | Zbl

[12] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, FM, M., 1962, 1100 pp.

[13] Bellan P. M., Fundamentals of plasma physics, Cambridge Univ. Press, 2006, 609 pp.

[14] Balandin A. L., Ono Y., “Tomographic determination of plasma velocity with the use of ion Doppler spectroscopy”, Eur. Phys. J. D, 17 (2001), 337–344 | DOI

[15] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1974, 295 pp.

[16] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. 1, 2, McGraw-Hill, New York, 1953

[17] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990, 279 pp. | Zbl

[18] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, v. 1, 2, IL, M., 1958

[19] Bidenkharn L., Lauk Dzh., Uglovoi moment v kvantovoi fizike, v. 1, Teoriya i prilozheniya, Mir, M., 1984, 302 pp.