An approach to the construction of flow splitting schemes in the mixed finite element method
Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 33-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proposed a method for constructing efficient difference schemes approximating the equation of heat flow, for the problem of heat transfer in terms of "temperature – the heat flux vector". The proposed approach is based on the use of stable splitting schemes for mesh flux divergence. The approach is illustrated by several two-and three-dimensional examples. The orders of approximations of the proposed schemes are studied. The results of numerical experiments are presented.
Keywords: heat transfer, heat flux, mixed finite element method, difference schemes, splitting schemes.
@article{MM_2014_26_12_a2,
     author = {K. V. Voronin and Y. M. Laevsky},
     title = {An approach to the construction of flow splitting schemes in the mixed finite element method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {26},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a2/}
}
TY  - JOUR
AU  - K. V. Voronin
AU  - Y. M. Laevsky
TI  - An approach to the construction of flow splitting schemes in the mixed finite element method
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 33
EP  - 47
VL  - 26
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_12_a2/
LA  - ru
ID  - MM_2014_26_12_a2
ER  - 
%0 Journal Article
%A K. V. Voronin
%A Y. M. Laevsky
%T An approach to the construction of flow splitting schemes in the mixed finite element method
%J Matematičeskoe modelirovanie
%D 2014
%P 33-47
%V 26
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_12_a2/
%G ru
%F MM_2014_26_12_a2
K. V. Voronin; Y. M. Laevsky. An approach to the construction of flow splitting schemes in the mixed finite element method. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 33-47. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a2/

[1] Voronin K. V., Laevskii Yu. M., “O skhemakh rasschepleniya v smeshannom metode konechnykh elementov”, Sibirskii zhurnal vychislitelnoi matematiki, 15:2 (2012), 183–189 | Zbl

[2] Voronin K. V., Laevskii Yu. M., “Skhemy rasschepleniya v smeshannom metode konechnykh elementov resheniya zadach teploperenosa”, Matematicheskoe modelirovanie, 24:8 (2012), 109–120 | Zbl

[3] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991, 350 pp. | Zbl

[4] Arbogast T., Huang C.-S., Yang S.-M., “Improved accuracy for alternating-direction methods for parabolic equations based on regular and mixed finite elements”, Mathematical Models and Methods in Applied Sciences, 17:8 (2007), 1279–1305 | DOI | Zbl

[5] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 194 pp.

[6] Gulin A. V., “Ustoichivost nelokalnykh raznostnykh skhem v podprostranstve”, Differentsialnye uravneniya, 48:7 (2012), 956–965 | Zbl

[7] Douglas J., Gunn J. E., “A general formulation of alternating direction methods”, Numerische Mathematik, 6 (1964), 428–453 | DOI | Zbl

[8] Laevskii Yu. M., Popov P. E., Kalinkin A. A., “Modelirovanie filtratsii dvukhfaznoi zhidkosti smeshannym metodom konechnykh elementov”, Matematicheskoe modelirovanie, 22:3 (2010), 74–90