Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_12_a1, author = {E. K. Vdovina and L. V. Pugina and K. A. Volosov}, title = {The models of the pulsating process of blood clotting}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {14--32}, publisher = {mathdoc}, volume = {26}, number = {12}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a1/} }
TY - JOUR AU - E. K. Vdovina AU - L. V. Pugina AU - K. A. Volosov TI - The models of the pulsating process of blood clotting JO - Matematičeskoe modelirovanie PY - 2014 SP - 14 EP - 32 VL - 26 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_12_a1/ LA - ru ID - MM_2014_26_12_a1 ER -
E. K. Vdovina; L. V. Pugina; K. A. Volosov. The models of the pulsating process of blood clotting. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 14-32. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a1/
[1] Lobanov A. I., Starozhilova T. K., Guriya G. T., “Chislennoe issledovanie strukturoobrazovaniya pri svertyvanii krovi”, Matematicheskoe modelirovanie, 9:8 (1997), 83–95 | Zbl
[2] Lobanov A. I., Starozhilova T. K., “Nestatsionarnye struktury v modeli svertyvaniya krovi”, Vzglyad v trete tysyacheletie, eds. Malinetskii G. G., Kurdyumov S. P., Nauka, M., 2002
[3] Ataullakhanov F. I., Zarnitsina V. I., Kondratovich A. Yu., Lobanova E. S., Sarbash V. I., “Osobyi klass avtovoln — avtovolny s ostanovkoi — opredelyaet prostranstvennuyu dinamiku svertyvaniya krovi”, Uspekhi fizicheskikh nauk, 172:6 (2002), 671–690 | DOI
[4] Lobanov A. I., Starozhilova T. K., Zarnitsina V. I., Ataullakhanov F. I., “Sravnenie dvukh matematicheskikh modelei dlya opisaniya prostranstvennoi dinamiki protsessa svertyvaniya krovi”, Matematicheskoe modelirovanie, 15:1 (2003), 14–28 | Zbl
[5] Krutikova M. P., Kurilenko I. A., Lobanov A. I., Starozhilova T. K., “Dvumernye statsionarnye struktury v matematicheskoi modeli svertyvaniya krovi s uchetom gipotezy o pereklyuchenii aktivnosti trombina”, Matematicheskoe modelirovanie, 16:12 (2004), 85–95 | Zbl
[6] Cherniha R. M., Seruv M., Rassokha I., “Lie symmetries and Form — preserving transformations of reaction–diffusion–convection equations”, J. Math. Anal. Appl., 342 (2008), 1363–1379 | DOI | Zbl
[7] Maslov V. P., Danilov V. G., Volosov K. A., Matematicheskoe modelirovanie protsessov teplo-massoperenosa (evolyutsiya dissipativnykh struktur), S dobavleniem N. A. Kolobova, Nauka, M., 1987, 352 pp.
[8] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer Academic publishers, Dordrecht–Boston–London, 1995, 316 pp. | Zbl
[9] “Approximate solutions of liner parabolic equations into asymptotic solutions of quasilinear parabolic equations”, Math. Notes, 56:6 (1994), 1295–1299 | DOI | Zbl
[10] Volosov K. A., Metodika analiza evolyutsionnykh sistem s raspredelennymi parametrami, Dis. ... dokt. fiz.-matem. nauk, MIEM, 2007 , http://eqworld.ipmnet.ruhttp://www.aplsmath.ru
[11] Volosova A. K., Volosov K. A., “Construction solutions of PDE in Parametric Form”, International Journal of Mathematics and Mathematical Sciences, 2009, 319268, 17 pp. http://www.hindawi.com/journals/ijmms/2009/319269/ | DOI
[12] Journal of Applied and Industrial Mathematics, 3:4 (2009), 519–527 http://www.springerlink.com/content/h347004463516r68 | DOI | Zbl
[13] Vdovina E. K., Volosov K. A., “Matematicheskoe modelirovanie spiralnykh voln”, Matematicheskoe modelirovanie, 25:3 (2013), 14–24
[14] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi: Tochnye resheniya, Mezhdunarodnaya programma obrazovaniya, M., 1996, 496 pp.
[15] Zaitsev V. F., Polyanin A. D., Spravochnik. Obyknovennye differentsialnye uravneniya, Fiziko-matematicheskaya literatura, M., 2001, 576 pp. | Zbl