The models of the pulsating process of blood clotting
Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 14-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic solutions were constructed describing nonlinear pulsating modes arising in the models of processes of blood clotting. The expressions of coefficients of exponential decreasing of the solution and the frequency of oscillation were calculated through the parameters of the problem. The pulsating spiral waves were described too. There is a possibility of describing a family of solutions of nonlinear differential equation of fourth order with partial derivatives (PDE) solutions of nonlinear second order PDE. The method of unfixed constructive replacement of variables (MUCR) is used to prove the existence of such a way of construction of solutions.
Keywords: model of pulsating process of blood clotting, pulsating spiral waves, effect of “stop” spiral wave, asymptotic solutions.
@article{MM_2014_26_12_a1,
     author = {E. K. Vdovina and L. V. Pugina and K. A. Volosov},
     title = {The models of the pulsating process of blood clotting},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--32},
     publisher = {mathdoc},
     volume = {26},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_12_a1/}
}
TY  - JOUR
AU  - E. K. Vdovina
AU  - L. V. Pugina
AU  - K. A. Volosov
TI  - The models of the pulsating process of blood clotting
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 14
EP  - 32
VL  - 26
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_12_a1/
LA  - ru
ID  - MM_2014_26_12_a1
ER  - 
%0 Journal Article
%A E. K. Vdovina
%A L. V. Pugina
%A K. A. Volosov
%T The models of the pulsating process of blood clotting
%J Matematičeskoe modelirovanie
%D 2014
%P 14-32
%V 26
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_12_a1/
%G ru
%F MM_2014_26_12_a1
E. K. Vdovina; L. V. Pugina; K. A. Volosov. The models of the pulsating process of blood clotting. Matematičeskoe modelirovanie, Tome 26 (2014) no. 12, pp. 14-32. http://geodesic.mathdoc.fr/item/MM_2014_26_12_a1/

[1] Lobanov A. I., Starozhilova T. K., Guriya G. T., “Chislennoe issledovanie strukturoobrazovaniya pri svertyvanii krovi”, Matematicheskoe modelirovanie, 9:8 (1997), 83–95 | Zbl

[2] Lobanov A. I., Starozhilova T. K., “Nestatsionarnye struktury v modeli svertyvaniya krovi”, Vzglyad v trete tysyacheletie, eds. Malinetskii G. G., Kurdyumov S. P., Nauka, M., 2002

[3] Ataullakhanov F. I., Zarnitsina V. I., Kondratovich A. Yu., Lobanova E. S., Sarbash V. I., “Osobyi klass avtovoln — avtovolny s ostanovkoi — opredelyaet prostranstvennuyu dinamiku svertyvaniya krovi”, Uspekhi fizicheskikh nauk, 172:6 (2002), 671–690 | DOI

[4] Lobanov A. I., Starozhilova T. K., Zarnitsina V. I., Ataullakhanov F. I., “Sravnenie dvukh matematicheskikh modelei dlya opisaniya prostranstvennoi dinamiki protsessa svertyvaniya krovi”, Matematicheskoe modelirovanie, 15:1 (2003), 14–28 | Zbl

[5] Krutikova M. P., Kurilenko I. A., Lobanov A. I., Starozhilova T. K., “Dvumernye statsionarnye struktury v matematicheskoi modeli svertyvaniya krovi s uchetom gipotezy o pereklyuchenii aktivnosti trombina”, Matematicheskoe modelirovanie, 16:12 (2004), 85–95 | Zbl

[6] Cherniha R. M., Seruv M., Rassokha I., “Lie symmetries and Form — preserving transformations of reaction–diffusion–convection equations”, J. Math. Anal. Appl., 342 (2008), 1363–1379 | DOI | Zbl

[7] Maslov V. P., Danilov V. G., Volosov K. A., Matematicheskoe modelirovanie protsessov teplo-massoperenosa (evolyutsiya dissipativnykh struktur), S dobavleniem N. A. Kolobova, Nauka, M., 1987, 352 pp.

[8] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer Academic publishers, Dordrecht–Boston–London, 1995, 316 pp. | Zbl

[9] “Approximate solutions of liner parabolic equations into asymptotic solutions of quasilinear parabolic equations”, Math. Notes, 56:6 (1994), 1295–1299 | DOI | Zbl

[10] Volosov K. A., Metodika analiza evolyutsionnykh sistem s raspredelennymi parametrami, Dis. ... dokt. fiz.-matem. nauk, MIEM, 2007 , http://eqworld.ipmnet.ruhttp://www.aplsmath.ru

[11] Volosova A. K., Volosov K. A., “Construction solutions of PDE in Parametric Form”, International Journal of Mathematics and Mathematical Sciences, 2009, 319268, 17 pp. http://www.hindawi.com/journals/ijmms/2009/319269/ | DOI

[12] Journal of Applied and Industrial Mathematics, 3:4 (2009), 519–527 http://www.springerlink.com/content/h347004463516r68 | DOI | Zbl

[13] Vdovina E. K., Volosov K. A., “Matematicheskoe modelirovanie spiralnykh voln”, Matematicheskoe modelirovanie, 25:3 (2013), 14–24

[14] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi: Tochnye resheniya, Mezhdunarodnaya programma obrazovaniya, M., 1996, 496 pp.

[15] Zaitsev V. F., Polyanin A. D., Spravochnik. Obyknovennye differentsialnye uravneniya, Fiziko-matematicheskaya literatura, M., 2001, 576 pp. | Zbl