Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_11_a8, author = {S. I. Bezrodnykh and V. I. Vlasov}, title = {Solution of the inverse problem for the {Grad--Shafranov} equation for magnetic field computation in tokamak}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {57--64}, publisher = {mathdoc}, volume = {26}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/} }
TY - JOUR AU - S. I. Bezrodnykh AU - V. I. Vlasov TI - Solution of the inverse problem for the Grad--Shafranov equation for magnetic field computation in tokamak JO - Matematičeskoe modelirovanie PY - 2014 SP - 57 EP - 64 VL - 26 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/ LA - ru ID - MM_2014_26_11_a8 ER -
%0 Journal Article %A S. I. Bezrodnykh %A V. I. Vlasov %T Solution of the inverse problem for the Grad--Shafranov equation for magnetic field computation in tokamak %J Matematičeskoe modelirovanie %D 2014 %P 57-64 %V 26 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/ %G ru %F MM_2014_26_11_a8
S. I. Bezrodnykh; V. I. Vlasov. Solution of the inverse problem for the Grad--Shafranov equation for magnetic field computation in tokamak. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 57-64. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/
[1] Aymar R., Barabaschi P., Shimomura Y., “The ITER design”, Plasma Phys. Control. Fusion, 44 (2002), 519–565 | DOI
[2] Shafranov V. D., “On equilibrium magnetohydrodynamic configurations”, Terzo Congresso Internazionale Sui Fenomeni Dionizzazione Nei Gas (Venezia, 11–15 giugno, 1957), Milano, 1957, 990–997
[3] Grad H., Rubin H., “Hydromagnetic equilibria and force-free fields”, Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy (Geneva, 1958), v. 31, Columbia University Press, New York, 1959, 190
[4] Mirnov S. V., Fizicheskie protsessy v plazme tokamaka, Energoatomizdat, M., 1985
[5] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1993
[6] Morozov A. I., Vvedenie v plazmodinamiku, Fizmatlit, M., 2006
[7] Brushlinskii K. V., Matematicheskie i vychislitelnye zadachi magnitnoi gidrodinamiki, BINOM. Laboratoriya znanii, M., 2009
[8] Demidov A. S., “Funktsionalno-geometricheskii metod resheniya zadach so svobodnoi granitsei dlya garmonicheskikh funktsii”, Uspekhi Matem. nauk, 65:1 (2010), 3–96 | DOI | MR | Zbl
[9] Vogelius M., “An inverse problem for the equation $\Delta u=-cu-d$”, Ann. Inst. Fourier, 44:4 (1994), 1181–1204 | DOI | MR
[10] Demidov A. S., “Ob obratnoi zadache dlya uravneniya Greda–Shafranova s affinnoi pravoi chastyu”, Uspekhi Matem. Nauk, 55:6 (2000), 131–132 | DOI | MR
[11] Dalmasso R., “An inverse problem for the elliptic equation with an affine form”, Math. Ann., 316 (2000), 771–792 | DOI | MR | Zbl
[12] Demidov A. S., Moussaoui M., “An inverse problem originating from magnetohydrodynamics”, Inverse Problems, 20 (2004), 137–154 | DOI | MR | Zbl
[13] Bezrodnykh S. I., Vlasov V. I., “Obratnaya zadacha dlya uravneniya Greda–Shafranova s nelokalnym usloviem”, Nauchnye vedomosti BelGU. Seriya: Matematika. Fizika, 24(119):25 (2011), 47–65 | MR | Zbl
[14] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs AN SSSR, M., 1987 | MR
[15] Vlasov V. I., “Multipole method for solving some boundary value problems in complex-shaped domains”, Zeitshr. Angew. Math. Mech., 76, suppl. 1 (1996), 279–282 | MR | Zbl
[16] Bezrodnykh S. I., Vlasov V. I., “The inverse problem for the Grad–Shafranov equation with application to magnetic field computation in tokamak”, International Conference “Mathematical Modeling and Computational Physics”, Book of Abstracts (Dubna, Russia, July 8–12, 2013), 50–51
[17] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR