Solution of the inverse problem for the Grad--Shafranov equation for magnetic field computation in tokamak
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper suggests a method of solving the inverse problem for the Grad–Shafranov equation with affine right-hand side with non-local condition in cross section of tokamaks and more general domains. A similar problem appears in computation of magnetic field within conventional model of tokamaks. A well-posed statement of the inverse problem is given. Necessary and sufficient conditions of its solvability are set. The used multipole method provided the relative error of the solution and its gradient on the boundary less than $10^{-9}$ by the use of about $100$ degrees of freedom.
Keywords: Grad–Shafranov equation, inverse problem, magnetic field computation
Mots-clés : non-local condition, tokamak, multipole method.
@article{MM_2014_26_11_a8,
     author = {S. I. Bezrodnykh and V. I. Vlasov},
     title = {Solution of the inverse problem for the {Grad--Shafranov} equation for magnetic field computation in tokamak},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--64},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
AU  - V. I. Vlasov
TI  - Solution of the inverse problem for the Grad--Shafranov equation for magnetic field computation in tokamak
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 57
EP  - 64
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/
LA  - ru
ID  - MM_2014_26_11_a8
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%A V. I. Vlasov
%T Solution of the inverse problem for the Grad--Shafranov equation for magnetic field computation in tokamak
%J Matematičeskoe modelirovanie
%D 2014
%P 57-64
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/
%G ru
%F MM_2014_26_11_a8
S. I. Bezrodnykh; V. I. Vlasov. Solution of the inverse problem for the Grad--Shafranov equation for magnetic field computation in tokamak. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 57-64. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a8/

[1] Aymar R., Barabaschi P., Shimomura Y., “The ITER design”, Plasma Phys. Control. Fusion, 44 (2002), 519–565 | DOI

[2] Shafranov V. D., “On equilibrium magnetohydrodynamic configurations”, Terzo Congresso Internazionale Sui Fenomeni Dionizzazione Nei Gas (Venezia, 11–15 giugno, 1957), Milano, 1957, 990–997

[3] Grad H., Rubin H., “Hydromagnetic equilibria and force-free fields”, Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy (Geneva, 1958), v. 31, Columbia University Press, New York, 1959, 190

[4] Mirnov S. V., Fizicheskie protsessy v plazme tokamaka, Energoatomizdat, M., 1985

[5] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1993

[6] Morozov A. I., Vvedenie v plazmodinamiku, Fizmatlit, M., 2006

[7] Brushlinskii K. V., Matematicheskie i vychislitelnye zadachi magnitnoi gidrodinamiki, BINOM. Laboratoriya znanii, M., 2009

[8] Demidov A. S., “Funktsionalno-geometricheskii metod resheniya zadach so svobodnoi granitsei dlya garmonicheskikh funktsii”, Uspekhi Matem. nauk, 65:1 (2010), 3–96 | DOI | MR | Zbl

[9] Vogelius M., “An inverse problem for the equation $\Delta u=-cu-d$”, Ann. Inst. Fourier, 44:4 (1994), 1181–1204 | DOI | MR

[10] Demidov A. S., “Ob obratnoi zadache dlya uravneniya Greda–Shafranova s affinnoi pravoi chastyu”, Uspekhi Matem. Nauk, 55:6 (2000), 131–132 | DOI | MR

[11] Dalmasso R., “An inverse problem for the elliptic equation with an affine form”, Math. Ann., 316 (2000), 771–792 | DOI | MR | Zbl

[12] Demidov A. S., Moussaoui M., “An inverse problem originating from magnetohydrodynamics”, Inverse Problems, 20 (2004), 137–154 | DOI | MR | Zbl

[13] Bezrodnykh S. I., Vlasov V. I., “Obratnaya zadacha dlya uravneniya Greda–Shafranova s nelokalnym usloviem”, Nauchnye vedomosti BelGU. Seriya: Matematika. Fizika, 24(119):25 (2011), 47–65 | MR | Zbl

[14] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs AN SSSR, M., 1987 | MR

[15] Vlasov V. I., “Multipole method for solving some boundary value problems in complex-shaped domains”, Zeitshr. Angew. Math. Mech., 76, suppl. 1 (1996), 279–282 | MR | Zbl

[16] Bezrodnykh S. I., Vlasov V. I., “The inverse problem for the Grad–Shafranov equation with application to magnetic field computation in tokamak”, International Conference “Mathematical Modeling and Computational Physics”, Book of Abstracts (Dubna, Russia, July 8–12, 2013), 50–51

[17] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR