@article{MM_2014_26_11_a7,
author = {A. I. Zobnin},
title = {Anti-Frobenius algebras and associative {Yang{\textendash}Baxter} equation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {51--56},
year = {2014},
volume = {26},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a7/}
}
A. I. Zobnin. Anti-Frobenius algebras and associative Yang–Baxter equation. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 51-56. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a7/
[1] M. Aguiar, “On the associative analog of Lie bialgebras”, J. Alg., 244:2 (2001), 492–532 | DOI | MR | Zbl
[2] M. Van den Bergh, “Double Poisson algebras”, Trans. Amer. Math. Soc., 360:11 (2008), 5711–5769 | DOI | MR | Zbl
[3] A. Connes, “Non-commutative Algebraic Geometry”, Publ. Math. Inst. Haute Études Sci., 62 (1985), 257–360 | MR
[4] Functional Anal. Appl., 16:4 (1982), 326–328 | DOI | MR
[5] A. V. Odesskii, V. N. Rubtsov, V. V. Sokolov, “Bi-Hamiltonian ordinary differential equations with matrix variables”, Theoretical and Mathematical Physics, 171:1, April (2012), 442–447 | DOI | MR | Zbl
[6] A. V. Odesskii, V. N. Rubtsov, V. V. Sokolov, “Double Poisson brackets on free associative algebras”, Contemporary Mathematics, 592, 2013, 225–241 | DOI | MR
[7] A. Polischuk, “Classical Yang–Baxter Equation and the $A_\infty$-Constraint”, Advances in Mathematics, 168:1 (2002), 56–95 | DOI | MR
[8] V. Sokolov, “Classification of constant solutions of associative Yang–Baxter equation on $\mathfrak{gl}(3)$”, Theoretical and Mathematical Physics, 176:3 (2013), 1156–1162 | DOI | MR | Zbl