Particle in cell simulation of kinetic instability of an electron beam in plasma
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 45-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A parallel 3D numerical model is created on the basis of Particle-In-Cell method. The model is designed for simulation of relaxation processes of the warm electron beam in plasma. Growth saturation of a separate unstable mode is studied in different regimes. The comparative analysis of methods for diagnostics of the instability is carried out. The results accuracy dependence on model particle number is determined. Minimal model particle number for correct instability increment calculation is defined.
Keywords: beam instability, Maxwell's equations, particle-in-cell (PIC) method.
Mots-clés : Vlasov equation
@article{MM_2014_26_11_a6,
     author = {K. V. Lotov and Y. A. Mesyats and A. V. Snytnikov},
     title = {Particle in cell simulation of kinetic instability of an electron beam in plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a6/}
}
TY  - JOUR
AU  - K. V. Lotov
AU  - Y. A. Mesyats
AU  - A. V. Snytnikov
TI  - Particle in cell simulation of kinetic instability of an electron beam in plasma
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 45
EP  - 50
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a6/
LA  - ru
ID  - MM_2014_26_11_a6
ER  - 
%0 Journal Article
%A K. V. Lotov
%A Y. A. Mesyats
%A A. V. Snytnikov
%T Particle in cell simulation of kinetic instability of an electron beam in plasma
%J Matematičeskoe modelirovanie
%D 2014
%P 45-50
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a6/
%G ru
%F MM_2014_26_11_a6
K. V. Lotov; Y. A. Mesyats; A. V. Snytnikov. Particle in cell simulation of kinetic instability of an electron beam in plasma. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 45-50. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a6/

[1] Kroll N., Traivelpis A., Osnovy fiziki plazmy, Izd-vo Mir, M., 1975

[2] Vshivkov V. A., Vshivkov K. V., Dudnikova G. I., “Algoritmy resheniya zadachi vzaimodeistviya lazernogo impulsa s plazmoi”, Vychislitelnye tekhnologii, 6:2 (2001), 47–63 | Zbl

[3] Yee K., “Numerical solution of initial boundary value problems Involving Maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14:3 (1966), 302–307 | DOI | Zbl

[4] Villasenor J., Buneman O., “Rigorous charge conservation for local electromagnetic-field solvers”, Computer Physics Communications, 69 (1992), 306–316 | DOI

[5] Grigorev Yu. N., Vshivkov V. A., Fedoruk M. P., Chislennoe modelirovanie metodami chastits v yacheikakh, Izd-vo SO RAN, Novosibirsk, 2004

[6] Snytnikov A. V., “Supercomputer simulation of plasma electron heat conductivity decrease due to relativistic electron beam relaxation”, Procedia Computer Science, 1:1 (2010), 607–615 | DOI

[7] Lotov K. V., Timofeev I. V., “Perekhodnyi rezhim odnomernoi dvukhpotokovoi neustoichivosti”, Vestnik NGU. Seriya: Fizika, 3:1 (2008), 62–65 | Zbl