On reduction of equations' number for cubic splines
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 33-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a new approach for computation of cubic splines that needs two times less equations than the existing ones. The technique utilizes an unexpected approximation result between polynomials of order four and three that resembles the well known result of Chebyshev on approximating power functions $x^n$.
Keywords: Hermit and B-splaines, calculation and smoothong.
@article{MM_2014_26_11_a4,
     author = {Cs. T\"or\"ok},
     title = {On reduction of equations' number for cubic splines},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--36},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a4/}
}
TY  - JOUR
AU  - Cs. Török
TI  - On reduction of equations' number for cubic splines
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 33
EP  - 36
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a4/
LA  - en
ID  - MM_2014_26_11_a4
ER  - 
%0 Journal Article
%A Cs. Török
%T On reduction of equations' number for cubic splines
%J Matematičeskoe modelirovanie
%D 2014
%P 33-36
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a4/
%G en
%F MM_2014_26_11_a4
Cs. Török. On reduction of equations' number for cubic splines. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 33-36. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a4/

[1] Stoer J., Bulirsch R., Introduction to Numerical Analysis, 3rd edition, Springer-Verlag, New York, 2002 | MR

[2] Török Cs., “Reference Points Based Transformation and Approximation”, Kybernetika, 49:4 (2013), 644–662 http://www.kybernetika.cz/content/2013/4/644/paper.pdf | MR | Zbl