On reduction of equations' number for cubic splines
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 33-36
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper proposes a new approach for computation of cubic splines that needs two times less equations than the existing ones. The technique utilizes an unexpected approximation result between polynomials of order four and three that resembles the well known result of Chebyshev on approximating power functions $x^n$.
Keywords:
Hermit and B-splaines, calculation and smoothong.
@article{MM_2014_26_11_a4,
author = {Cs. T\"or\"ok},
title = {On reduction of equations' number for cubic splines},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {33--36},
year = {2014},
volume = {26},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a4/}
}
Cs. Török. On reduction of equations' number for cubic splines. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 33-36. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a4/
[1] Stoer J., Bulirsch R., Introduction to Numerical Analysis, 3rd edition, Springer-Verlag, New York, 2002 | MR
[2] Török Cs., “Reference Points Based Transformation and Approximation”, Kybernetika, 49:4 (2013), 644–662 http://www.kybernetika.cz/content/2013/4/644/paper.pdf | MR | Zbl