Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_11_a15, author = {D. A. Zenyuk}, title = {Numerical simulation of random walks on regular fractal sets}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {101--104}, publisher = {mathdoc}, volume = {26}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a15/} }
D. A. Zenyuk. Numerical simulation of random walks on regular fractal sets. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 101-104. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a15/
[1] Shlesinger M. F., Zaslavsky G. M., Klafter J., “Strange kinetics”, Nature, 363:6424 (1993), 13–37 | DOI
[2] Zelenyi L. M., Milovanov A. V., “Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyatsii k problemam kosmicheskoi elektrodinamiki”, UFN, 174:8 (2004), 809–852 | DOI
[3] Gorenflo R., Mainardi F., Moretti D. et al., “Discrete random walk models for space-time fractional diffusion”, Chemical Physics, 284:1 (2004), 521–541
[4] Gorenflo R., Mainardi F., Moretti D. et al., “Fractional diffusion: probability distributions and random walk models”, Physica A: Statistical Mechanics and its Applications, 305:1 (2002), 106–112 | DOI | MR | Zbl
[5] Andries E., Umarov S., Steinberg S., “Monte Carlo random walk simulations based on distributed order differential equations with applications to cell biology”, Fractional Calculus and Applied Analysis, 9:4 (2006), 351–369 | MR | Zbl
[6] Burioni R., Caniparoli L., Lepri S., Vezzani A., “Levy-type diffusion on one-dimensional directed Cantor”, Physical Review E, 81:1 (2010), 011127–011135 | DOI | MR
[7] Jones O. D., “Transition probabilities for simple random walk on the Sierpiński graph”, Stochastic Processes and their Applications, 61:1 (1996), 45–69 | DOI | MR | Zbl
[8] Willard S., General topology, Addison-Wesley Publishing, Reading, MA, 1970, 369 pp. | MR | Zbl
[9] Mandelbrot B. B., Fractal geometry of nature, W. H. Freeman, New York, 1983, 468 pp. | MR
[10] Gouyet J.-F., Physics and fractal structures, Springer, New York, 1995, 234 pp. | MR
[11] Zenyuk D. A., Mitin N. A., Orlov Yu. N., “Modelirovanie sluchainogo bluzhdaniya na kantorovom mnozhestve”, Preprinty IPM, 2013, 031, 18 pp. | Zbl
[12] Hutchinson J. E., “Fractals and self-similarity”, Indiana University Mathematics Journal, 30:5 (1981), 713–747 | DOI | MR | Zbl
[13] Barnsley M. F., Demko S., “Iterated function systems and the global construction of fractals”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 399:1817 (1985), 243–275 | DOI | MR | Zbl
[14] Zhang X.-M., Hitt L. R., Wang B., Ding J., “Sierpiński pedal triangles”, Fractals, 16:2 (2008), 141–150 | DOI | MR | Zbl