Numerical simulation of random walks on regular fractal sets
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 101-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective numerical method for simulation of random walk on deterministic fractal sets generated by an iterated function system is proposed. Some sample paths for fractal sets on plane are shown.
Keywords: random walk, strange kinetics.
Mots-clés : fractal sets
@article{MM_2014_26_11_a15,
     author = {D. A. Zenyuk},
     title = {Numerical simulation of random walks on regular fractal sets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--104},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a15/}
}
TY  - JOUR
AU  - D. A. Zenyuk
TI  - Numerical simulation of random walks on regular fractal sets
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 101
EP  - 104
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a15/
LA  - ru
ID  - MM_2014_26_11_a15
ER  - 
%0 Journal Article
%A D. A. Zenyuk
%T Numerical simulation of random walks on regular fractal sets
%J Matematičeskoe modelirovanie
%D 2014
%P 101-104
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a15/
%G ru
%F MM_2014_26_11_a15
D. A. Zenyuk. Numerical simulation of random walks on regular fractal sets. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 101-104. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a15/

[1] Shlesinger M. F., Zaslavsky G. M., Klafter J., “Strange kinetics”, Nature, 363:6424 (1993), 13–37 | DOI

[2] Zelenyi L. M., Milovanov A. V., “Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyatsii k problemam kosmicheskoi elektrodinamiki”, UFN, 174:8 (2004), 809–852 | DOI

[3] Gorenflo R., Mainardi F., Moretti D. et al., “Discrete random walk models for space-time fractional diffusion”, Chemical Physics, 284:1 (2004), 521–541

[4] Gorenflo R., Mainardi F., Moretti D. et al., “Fractional diffusion: probability distributions and random walk models”, Physica A: Statistical Mechanics and its Applications, 305:1 (2002), 106–112 | DOI | MR | Zbl

[5] Andries E., Umarov S., Steinberg S., “Monte Carlo random walk simulations based on distributed order differential equations with applications to cell biology”, Fractional Calculus and Applied Analysis, 9:4 (2006), 351–369 | MR | Zbl

[6] Burioni R., Caniparoli L., Lepri S., Vezzani A., “Levy-type diffusion on one-dimensional directed Cantor”, Physical Review E, 81:1 (2010), 011127–011135 | DOI | MR

[7] Jones O. D., “Transition probabilities for simple random walk on the Sierpiński graph”, Stochastic Processes and their Applications, 61:1 (1996), 45–69 | DOI | MR | Zbl

[8] Willard S., General topology, Addison-Wesley Publishing, Reading, MA, 1970, 369 pp. | MR | Zbl

[9] Mandelbrot B. B., Fractal geometry of nature, W. H. Freeman, New York, 1983, 468 pp. | MR

[10] Gouyet J.-F., Physics and fractal structures, Springer, New York, 1995, 234 pp. | MR

[11] Zenyuk D. A., Mitin N. A., Orlov Yu. N., “Modelirovanie sluchainogo bluzhdaniya na kantorovom mnozhestve”, Preprinty IPM, 2013, 031, 18 pp. | Zbl

[12] Hutchinson J. E., “Fractals and self-similarity”, Indiana University Mathematics Journal, 30:5 (1981), 713–747 | DOI | MR | Zbl

[13] Barnsley M. F., Demko S., “Iterated function systems and the global construction of fractals”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 399:1817 (1985), 243–275 | DOI | MR | Zbl

[14] Zhang X.-M., Hitt L. R., Wang B., Ding J., “Sierpiński pedal triangles”, Fractals, 16:2 (2008), 141–150 | DOI | MR | Zbl