Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_11_a14, author = {I. M. Nikolsky}, title = {Computational investigation of $\mathrm{IWZ}(k)$ precondition}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {97--100}, publisher = {mathdoc}, volume = {26}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a14/} }
I. M. Nikolsky. Computational investigation of $\mathrm{IWZ}(k)$ precondition. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 97-100. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a14/
[1] Saad Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003 | MR
[2] Demmel J. W., Applied numerical linear algebra, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997 | MR
[3] Bylina B., Bylina J., “The incomplete factorization preconditioners applied to the GMRES(m) method for solving Markov chains”, Proceedings of the Federated Conference on Computer Science and Information Systems (2011), 423–430
[4] Bylina B., Bylina J., “Incomplete WZ factorization as an alternative method of preconditioning for solving Markov chains”, Parallel Processing and Applied Mathematics, 4967 (2008), 99–107 | DOI
[5] Evans D. J., Hatzopoulos M., “The parallel solution of linear system”, International Journal of Computer Mathematics, 1979, 227–238 | DOI | MR | Zbl