A brief description of two-sided approximation for some Newton’s type methods
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 71-77
Cet article a éte moissonné depuis la source Math-Net.Ru
We suggest and analyze a combination of a damped Newton’s method and a simplified version of Newton’s one. We show that the proposed iterations give two-sided approximations of the solution which can be efficiently used as posteriori estimations. Some numerical examples illustrate the efficiency and performance of the method proposed.
@article{MM_2014_26_11_a10,
author = {T. Zhanlav and O. Chuluunbaatar and V. Ulziibayar},
title = {A brief description of two-sided approximation for some {Newton{\textquoteright}s} type methods},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {71--77},
year = {2014},
volume = {26},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a10/}
}
TY - JOUR AU - T. Zhanlav AU - O. Chuluunbaatar AU - V. Ulziibayar TI - A brief description of two-sided approximation for some Newton’s type methods JO - Matematičeskoe modelirovanie PY - 2014 SP - 71 EP - 77 VL - 26 IS - 11 UR - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a10/ LA - en ID - MM_2014_26_11_a10 ER -
T. Zhanlav; O. Chuluunbaatar; V. Ulziibayar. A brief description of two-sided approximation for some Newton’s type methods. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 71-77. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a10/
[1] Podlevs'kii B. A., Comput. Math. Math. Phys., 47 (2007), 1745–1755 | DOI | MR
[2] Podlevs'kii B. A., Comput. Math. Math. Phys., 48 (2008), 2140–2145 | DOI | MR
[3] Podlevs'kii B. A., Dop. NAN. Ukr., 5 (1998), 37–41 | MR
[4] Zhanlav T., Puzynin I. V., Comput. Math. Math. Phys., 32:6 (1992), 729–737 | MR | Zbl
[5] Zhanlav T., Chuulunbaatar O., Numerical methods and Programming, 10 (2009), 402–407
[6] Zhanlav T., Khongorzul D., Comput. Math. Math. Phys., 52 (2012), 790–800 | MR | Zbl
[7] Pǎvǎloiu I., Cǎtinas E., Appl. Math. Comput., 215 (2009), 2663–2672 | DOI | MR
[8] Pǎvǎloiu I., Cǎtinas E., Appl. Math. Comput., 217 (2011), 5838–5846 | DOI | MR