A brief description of two-sided approximation for some Newton’s type methods
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 71-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest and analyze a combination of a damped Newton’s method and a simplified version of Newton’s one. We show that the proposed iterations give two-sided approximations of the solution which can be efficiently used as posteriori estimations. Some numerical examples illustrate the efficiency and performance of the method proposed.
@article{MM_2014_26_11_a10,
     author = {T. Zhanlav and O. Chuluunbaatar and V. Ulziibayar},
     title = {A brief description of two-sided approximation for some {Newton{\textquoteright}s} type methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a10/}
}
TY  - JOUR
AU  - T. Zhanlav
AU  - O. Chuluunbaatar
AU  - V. Ulziibayar
TI  - A brief description of two-sided approximation for some Newton’s type methods
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 71
EP  - 77
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a10/
LA  - en
ID  - MM_2014_26_11_a10
ER  - 
%0 Journal Article
%A T. Zhanlav
%A O. Chuluunbaatar
%A V. Ulziibayar
%T A brief description of two-sided approximation for some Newton’s type methods
%J Matematičeskoe modelirovanie
%D 2014
%P 71-77
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a10/
%G en
%F MM_2014_26_11_a10
T. Zhanlav; O. Chuluunbaatar; V. Ulziibayar. A brief description of two-sided approximation for some Newton’s type methods. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 71-77. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a10/

[1] Podlevs'kii B. A., Comput. Math. Math. Phys., 47 (2007), 1745–1755 | DOI | MR

[2] Podlevs'kii B. A., Comput. Math. Math. Phys., 48 (2008), 2140–2145 | DOI | MR

[3] Podlevs'kii B. A., Dop. NAN. Ukr., 5 (1998), 37–41 | MR

[4] Zhanlav T., Puzynin I. V., Comput. Math. Math. Phys., 32:6 (1992), 729–737 | MR | Zbl

[5] Zhanlav T., Chuulunbaatar O., Numerical methods and Programming, 10 (2009), 402–407

[6] Zhanlav T., Khongorzul D., Comput. Math. Math. Phys., 52 (2012), 790–800 | MR | Zbl

[7] Pǎvǎloiu I., Cǎtinas E., Appl. Math. Comput., 215 (2009), 2663–2672 | DOI | MR

[8] Pǎvǎloiu I., Cǎtinas E., Appl. Math. Comput., 217 (2011), 5838–5846 | DOI | MR