Dimer problem on cylinders: recurrences and generating functions
Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 18-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of recurrences and generating functions that arise from the problem of counting perfect matchings on cylinder graph family. It is shown that the order of the recurrences depends heavily on parity of one of the parameters of the graph family.
Keywords: dimer problem, perfect matchings, generating functions.
@article{MM_2014_26_11_a1,
     author = {A. M. Karavaev and S. N. Perepechko},
     title = {Dimer problem on cylinders: recurrences and generating functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--22},
     publisher = {mathdoc},
     volume = {26},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2014_26_11_a1/}
}
TY  - JOUR
AU  - A. M. Karavaev
AU  - S. N. Perepechko
TI  - Dimer problem on cylinders: recurrences and generating functions
JO  - Matematičeskoe modelirovanie
PY  - 2014
SP  - 18
EP  - 22
VL  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2014_26_11_a1/
LA  - ru
ID  - MM_2014_26_11_a1
ER  - 
%0 Journal Article
%A A. M. Karavaev
%A S. N. Perepechko
%T Dimer problem on cylinders: recurrences and generating functions
%J Matematičeskoe modelirovanie
%D 2014
%P 18-22
%V 26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2014_26_11_a1/
%G ru
%F MM_2014_26_11_a1
A. M. Karavaev; S. N. Perepechko. Dimer problem on cylinders: recurrences and generating functions. Matematičeskoe modelirovanie, Tome 26 (2014) no. 11, pp. 18-22. http://geodesic.mathdoc.fr/item/MM_2014_26_11_a1/

[1] Narumi H., Hosoya H., Murakami H., “Generalized expression for the numbers of perfect matching of cylindrical $m\times n$ graphs”, Journal of Mathematical Physics, 32:7 (1991), 1885–1889 | DOI | MR | Zbl

[2] Hock J. L., McQuistan R. B., “The occupation statistics for indistinguishable dumbbells on a $2\times2\times N$ lattice space”, Journal of Mathematical Physics, 24:7 (1983), 1859–1865 | DOI | MR

[3] Faase F. J., “On the number of specific spanning subgraphs of the graphs $G\times P_n$”, Ars Combinatoria, 49 (1998), 129–154 | MR | Zbl

[4] Lundow P. H., Enumeration of matchings in polygraphs (revised and updated version), Research Report, No 12, UmeåUniversity, 1996 http://www.theophys.kth.se/\allowbreakp̃hl/Text/1factors.ps.gz

[5] The On-Line Encyclopedia of Integer Sequences, , The OEIS Foundation http://oeis.org

[6] Karavaev A. M., “Metod dinamicheskogo programmirovaniya dlya podscheta zamoschenii domino na pryamougolnoi reshetke i tsilindre”, Aktualnye problemy gumanitarnykh i estestvennykh nauk, 2013, no. 06(53), 13–18

[7] Stanley R. P., “On dimer coverings of rectangles of fixed width”, Discrete Applied Mathematics, 12 (1985), 81–87 | DOI | MR | Zbl

[8] Karavaev A. M., “Vyvod lineinogo rekurrentnogo sootnosheniya s postoyannymi tselymi koeffitsientami po zadannoi tselochislennoi posledovatelnosti”, Estestvennye i tekhnicheskie nauki, 2012, no. 5(61), 22–27

[9] Artem M. Karavaev, FlowProblem, , Copyright \copyright 2008–2013 http://www.flowproblem.ru