Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2014_26_10_a6, author = {I. V. Bychin and V. A. Galkin and T. V. Gavrilenko and A. V. Gorelikov and A. V. Ryakhovsky}, title = {Software for numerical simulation of convection in spherical shells for hybrid {CPU/GPU} computing systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {95--108}, publisher = {mathdoc}, volume = {26}, number = {10}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2014_26_10_a6/} }
TY - JOUR AU - I. V. Bychin AU - V. A. Galkin AU - T. V. Gavrilenko AU - A. V. Gorelikov AU - A. V. Ryakhovsky TI - Software for numerical simulation of convection in spherical shells for hybrid CPU/GPU computing systems JO - Matematičeskoe modelirovanie PY - 2014 SP - 95 EP - 108 VL - 26 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2014_26_10_a6/ LA - ru ID - MM_2014_26_10_a6 ER -
%0 Journal Article %A I. V. Bychin %A V. A. Galkin %A T. V. Gavrilenko %A A. V. Gorelikov %A A. V. Ryakhovsky %T Software for numerical simulation of convection in spherical shells for hybrid CPU/GPU computing systems %J Matematičeskoe modelirovanie %D 2014 %P 95-108 %V 26 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2014_26_10_a6/ %G ru %F MM_2014_26_10_a6
I. V. Bychin; V. A. Galkin; T. V. Gavrilenko; A. V. Gorelikov; A. V. Ryakhovsky. Software for numerical simulation of convection in spherical shells for hybrid CPU/GPU computing systems. Matematičeskoe modelirovanie, Tome 26 (2014) no. 10, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_2014_26_10_a6/
[1] TOP-500. List of World's Supercomputers, (data obrascheniya 05.11.2013) http://www.top500.org/
[2] NVIDIA Tesla Kepler Family Datasheet, (data obrascheniya 05.11.2013) http://www.nvidia.ru/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
[3] Eksaflopsnye tekhnologii kontseptsii po razvitiyu tekhnologii vysokoproizvoditelnykh vychislenii na baze SUPEREVM eksaflopsnogo klassa (2012–2020 gg.), (data obrascheniya 11.11.2013) http://www.rosatom.ru/resources/b186cd804a8838d1a1dca5801c9b04ac/esk_tex.pdf
[4] Standart OpenCL, (data obrascheniya 10.11.2013) http://www.khronos.org/opencl
[5] Munshi A., OpenCL Programming Guide, Addison-Wesley Professional, 2011, 603 pp.
[6] Scarpino M., OpenCL in Action: How to Accelerate Graphics and Computations, Manning Publications Co., 2011, 456 pp.
[7] Glatzmaier G. A., Roberts P. H., “A three-dimensional self-consistent computer simulation of a geomagnetic field reversal”, Nature, 377 (1995), 203–209 | DOI
[8] Glatzmaier G. A., Roberts P. H., “A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle”, Phys. Earth Planet. Inter., 91:1–3 (1995), 63–75 | DOI
[9] Song X., Richards P. G., “Seismological evidence for differential rotation of the Earth's inner core”, Nature, 382 (1996), 221–224 | DOI
[10] Reshetnyak M. Yu., “Vraschenie vnutrennego yadra Zemli v modeli geodinamo”, DAN, 380:5 (2001), 15–19 | MR
[11] Miesch M. S., Elliott J. R., Toomre J., Clune T. L., Glatzmaier G. A., Gilman P. A., “Threedimensional spherical simulations of solarconvection. I: Differential rotation and pattern evolution achieved with laminar and turbulent states”, Astrophys. J., 532 (2000), 593–615 | DOI
[12] Kageyama A., Miyagoshi T., Sato T., “Formation of current coils in geodynamo simulations”, Nature, 454 (2008), 1106–1109 | DOI
[13] Glatzmaier G. A., Geodynamo simulations — How realistic are they?, Annu. Rev. Earth Planet. Sci., 30 (2002), 237–257 | DOI
[14] NVIDIA GeForce GTX TITAN, (data obrascheniya 15.11.2013) http://www.nvidia.ru/object/geforce-gtx-titan-ru.html
[15] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.
[16] Issa R. I., “Solution on the implicitly discretised fluid flow equations by operator-splitting”, Journal of Computational Physics, 61 (1985), 40–65 | MR
[17] Issa R. I., Gosman A. D., Watkins A. P., “The Computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme”, Journal of Computational Physics, 62 (1986), 66–82 | DOI | MR | Zbl
[18] Gorelikov A. V., Ryakhovskii A. V., “Chislennoe modelirovanie estestvennoi konvektsii v sfericheskom sloe”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2008, no. 3, 77–84
[19] Gorelikov A. V., Ryakhovskii A. V., Fokin A. S., “Chislennoe issledovanie nekotorykh nestatsionarnykh rezhimov estestvennoi konvektsii vo vraschayuschemsya sfericheskom sloe”, Vychislitelnaya mekhanika sploshnykh sred, 5:2 (2012), 184–192
[20] Bychin I. V., Gorelikov A. V., Ryakhovskii A. V., “Testirovanie programmnogo kompleksa dlya chislennogo modelirovaniya teploobmena i techeniya zhidkosti v sfericheskikh sloyakh”, Vestnik kibernetiki, 2013, no. 12, 81–88
[21] Sakharnykh N. A., Berezin S. B., Paskonov V. M., “Modelirovanie techenii v akvatorii Belogo morya: primenenie massivno-parallelnoi arkhitektury GPU”, Zhurnal «Superkompyutery», 2011, no. 2(6), 51–55
[22] Biblioteka MAGMA, (data obrascheniya 17.11.2013) http://icl.utk.edu/magma
[23] Biblioteka cuBLAS, (data obrascheniya 17.11.2013) https://developer.nvidia.com/cuBLAS
[24] IntelR C++ Compiler XE 13.1 User and Reference Guides, (data obrascheniya 20.11.2013) http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin
[25] Standartnyi interfeis bazovykh podprogramm lineinoi algebry BLAS, (data obrascheniya 17.11.2013) http://www.netlib.org/blas
[26] Christensen U. R. et al., “A numerical dynamo benchmark”, Physics of the Earth and Planetary Interiors, 128 (2001), 25–34 | DOI
[27] Busse F. H., “Convective flows in rapidly rotating spheres and their dynamo action”, Physics of Fluids, 14:4 (2002), 1301–1314 | DOI | MR