A comparison between the CABARET scheme and the MUSCL-type schemes
Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 109-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The CABARET scheme is compared with some schemes from the family of MUSCL-type schemes. Description and analysis of these schemes are presented as applied to the linear constant-coefficient advection equation. A new representation, which can be treated as a modification of the MUSCL scheme, is proposed for the CABARET scheme. Three types of limiters are considered in the MUSCL-type schemes: TVD, TVB and a new NOLD limiter. The schemes are evaluated on a number of linear problems (discontinuous and continuous profiles, uniform and non-uniform mesh) as well as on the nonlinear blast wave problem.
Mots-clés : CABARET scheme
Keywords: MUSCL-type schemes, TVD- and TVB-limiters, blast wave problem.
@article{MM_2013_25_9_a9,
     author = {A. V. Rodionov},
     title = {A comparison between the {CABARET} scheme and the {MUSCL-type} schemes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--136},
     publisher = {mathdoc},
     volume = {25},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_9_a9/}
}
TY  - JOUR
AU  - A. V. Rodionov
TI  - A comparison between the CABARET scheme and the MUSCL-type schemes
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 109
EP  - 136
VL  - 25
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_9_a9/
LA  - ru
ID  - MM_2013_25_9_a9
ER  - 
%0 Journal Article
%A A. V. Rodionov
%T A comparison between the CABARET scheme and the MUSCL-type schemes
%J Matematičeskoe modelirovanie
%D 2013
%P 109-136
%V 25
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_9_a9/
%G ru
%F MM_2013_25_9_a9
A. V. Rodionov. A comparison between the CABARET scheme and the MUSCL-type schemes. Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 109-136. http://geodesic.mathdoc.fr/item/MM_2013_25_9_a9/

[1] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR | Zbl

[2] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy «KABARE»”, Matem. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[3] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, DAN, 403:4 (2005), 459–464 | MR

[4] Karabasov S. A., Goloviznin V. M., “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 228 (2009), 7426–7451 | DOI | MR | Zbl

[5] Karabasov S. A., “O vozmozhnostyakh metodov vtorogo poryadka approksimatsii na primere modelnykh zadach gazo- i gidrodinamiki”, Matem. modelirovanie, 22:7 (2010), 93–120 | Zbl

[6] Goloviznin V. M., Kanaev A. A., “Printsip maksimuma partsialnykh lokalnykh variatsii dlya opredeleniya konvektivnykh potokov pri chislennom reshenii odnomernykh nelineinykh skalyarnykh giperbolicheskikh uravnenii”, Zhurnal vychisl. matem. i matem. fiziki, 51:5 (2011), 881–897 | MR | Zbl

[7] Woodward P., Colella P., “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. Comput. Phys., 54 (1984), 115–173 | DOI | MR | Zbl

[8] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zapiski TsAGI, 3:6 (1972), 68–77

[9] Ivanov M. Ya., Koretskii V. V., Kurochkina N. Ya., “Issledovanie svoistv raznostnykh skhem skvoznogo scheta pervogo poryadka approksimatsii”, Chislennye metody mekhaniki sploshnoi sredy, 11, no. 1, ITPM, Novosibirsk, 1980, 81–110 | MR

[10] Koretskii V. V., “O svoistvakh monotonnoi raznostnoi skhemy, postroennoi na osnove metoda S. K. Godunova s ispolzovaniem printsipa minimalnykh znachenii proizvodnoi”, Chislennye metody mekhaniki sploshnoi sredy, 13, no. 4, ITPM, Novosibirsk, 1982, 52–62

[11] Kolgan V. P., “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics”, J. Comput. Phys., 230 (2011), 2384–2390 | DOI | MR | Zbl

[12] Van Leer B., “A historical oversight: Vladimir P. Kolgan and his high-resolution scheme”, J. Comput. Phys., 230 (2011), 2378–2383 | DOI | MR | Zbl

[13] Rodionov A. V., “Complement to the “Kolgan project””, J. Comput. Phys., 231 (2012), 4465–4468 | DOI | MR | Zbl

[14] Van Leer B., “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR

[15] Fromm J. E., “A method for reducing dispersion in convective difference schemes”, J. Comput. Phys., 3 (1968), 176–189 | DOI | Zbl

[16] Colella P., “A direct Eulerian MUSCL scheme for gas dynamics”, SIAM J. Sci. Stat. Comput., 6 (1985), 104–117 | DOI | MR | Zbl

[17] Ben-Artzi M., Falcovitz J., “A second-order Godunov-type scheme for compressible fluid dynamics”, J. Comput. Phys., 55 (1984), 1–32 | DOI | MR | Zbl

[18] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | MR | Zbl

[19] Huynh H. T., “Accurate upwind methods for the Euler equations”, SIAM J. Numer. Anal., 32:5 (1995), 1565–1619 | DOI | MR | Zbl

[20] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42 | MR | Zbl

[21] Ostapenko V. V., “O silnoi monotonnosti skhemy «KABARE»”, Zhurnal vychisl. matem. i matem. fiziki, 52:3 (2012), 447–460 | MR | Zbl

[22] Van Leer B., “Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection”, J. Comput. Phys., 23 (1977), 276–299 | DOI | Zbl

[23] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes, I”, SIAM J. Numer. Anal., 24:2 (1987), 279–309 | DOI | MR | Zbl

[24] Rodionov A. V., “On the use of Boussinesq approximation in turbulent supersonic jet modeling”, Int. J. Heat Mass Transfer, 53 (2010), 889–901 | DOI | Zbl

[25] Shu C.-W., “TVB uniformly high-order schemes for conservation laws”, Math. Comput., 49 (1987), 105–121 | DOI | MR | Zbl

[26] Rodionov A. V., “Monotonnaya skhema vtorogo poryadka approksimatsii dlya skvoznogo rascheta neravnovesnykh techenii”, Zhurnal vychisl. matem. i matem. fiziki, 27:4 (1987), 585–593 | MR | Zbl

[27] Van Albada G. D., van Leer B., Roberts W. W., “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108 (1982), 76–84 | Zbl

[28] Ilin S. A., Timofeev E. V., Sravnenie nekotorykh kvazimonotonnykh raznostnykh skhem skvoznogo scheta. III: Nestatsionarnye zadachi gazovoi dinamiki, preprint No 1611, FTI im. A. F. Ioffe, S.-Peterburg, 1993