Boundary elements method based on a preliminary discretization
Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical method is presented for solving diffraction problems. The method is based on the boundary elements idea, i.e. the unknown values are the field values on the surface of the scatterer. Instead of numerical approximation of the initial (continuous) problem, an analogue of boundary element method is constructed for an approximate lattice problem. As the result, the accuracy of the method decreases, but it becomes very easy for implementation since the Green's function stop being singular. For uniqueness of the solution, the method is constructed by analogy with the CFIE approach developed for the classical boundary element method.
Mots-clés : wave diffraction
Keywords: Helmholtz equation, boundary elements method, boundary algebraic equations.
@article{MM_2013_25_9_a2,
     author = {J. Poblet-Puig and V. Yu. Valyaev and A. V. Shanin},
     title = {Boundary elements method based on a preliminary discretization},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {25},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_9_a2/}
}
TY  - JOUR
AU  - J. Poblet-Puig
AU  - V. Yu. Valyaev
AU  - A. V. Shanin
TI  - Boundary elements method based on a preliminary discretization
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 17
EP  - 31
VL  - 25
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_9_a2/
LA  - ru
ID  - MM_2013_25_9_a2
ER  - 
%0 Journal Article
%A J. Poblet-Puig
%A V. Yu. Valyaev
%A A. V. Shanin
%T Boundary elements method based on a preliminary discretization
%J Matematičeskoe modelirovanie
%D 2013
%P 17-31
%V 25
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_9_a2/
%G ru
%F MM_2013_25_9_a2
J. Poblet-Puig; V. Yu. Valyaev; A. V. Shanin. Boundary elements method based on a preliminary discretization. Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 17-31. http://geodesic.mathdoc.fr/item/MM_2013_25_9_a2/

[1] Givoli D., “Recent advances in the DtN FE method”, Arch. Comput. Method Eng., 6 (1999), 71–116 | DOI | MR

[2] Berenger J.-P., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl

[3] Harari I., Hughes T., “A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics”, Comput. Methods Appl. Mech. Engrg., 97 (1992), 77–102 | DOI | MR | Zbl

[4] Kleinman R., Roach G., “Boundary integral-equations for 3-dimensional Helmholtz equation”, SIAM Rev., 16 (1974), 214–236 | DOI | MR | Zbl

[5] Burton A., Miller G., “Application of integral equation methods to numerical solution of some exterior boundary-value problems”, Proc. R. Soc. A, 323 (1971), 201–210 | DOI | MR | Zbl

[6] Martinsson P. G., Rodin G. J., “Boundary algebraic equations for lattice problems”, Proc. R. Soc. A, 465 (2009), 2489–2503 | DOI | MR | Zbl

[7] Gillman A., Martinsson P. G., “Fast and accurate numerical methods for solving elliptic difference equations defined on lattices”, J. Comput. Phys., 229 (2010), 9026–9041 | DOI | MR | Zbl

[8] Ryaben'kii V. S., “On the method of difference potentials”, J. Sci. Comput., 28 (2006), 467–478 | DOI | MR

[9] Lim H., Utyuzhnikov S. V., Lam Y. W., Turan A., Avis M. R., Ryaben'kii V. S., Tsynkov S. V., “Experimental Validation of the Active Noise Control Methodology Based on Difference Potentials”, AIAA J., 47 (2009), 874–884 | DOI

[10] Tsukerman I., “A Singularity-Free Boundary Equation Method for Wave Scattering”, IEEE Trans. Antennas Propag., 59 (2011), 555–562 | DOI | MR

[11] Martin P. A., “Discrete scattering theory: Green's function for a square lattice”, Wave Motion, 43 (2006), 619–629 | DOI | MR | Zbl