Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_9_a1, author = {A. P. Duben}, title = {Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {4--16}, publisher = {mathdoc}, volume = {25}, number = {9}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_9_a1/} }
TY - JOUR AU - A. P. Duben TI - Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes JO - Matematičeskoe modelirovanie PY - 2013 SP - 4 EP - 16 VL - 25 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_9_a1/ LA - ru ID - MM_2013_25_9_a1 ER -
A. P. Duben. Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes. Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 4-16. http://geodesic.mathdoc.fr/item/MM_2013_25_9_a1/
[1] Casey M., Wintergerste T., Best Practice Guidelines, ERCOFTAC, 2000
[2] Hellsten F., Rautaheimo P. (eds.), Proceedings of 8th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling, Helsinki University of Technology, 1999
[3] Spalart P., “Strategies for Turbulence Modelling and Simulations”, International Journal of Heat and Fluid Flow, 21:3 (2000), 252–263 | DOI
[4] Frohlich J., Terzi D., “Hybrid LES/RANS Methods for the Simulation of Turbulent Flows”, Progress in Aerospace Sciences, 44 (2008), 349–377 | DOI
[5] Spalart R. R., Jou W. H., Strelets M., Allmaras S. R., “Comments op the feasibility of LES for wings, and op a hybrid RANS/LES approach”, Proc. of the First AFOSR Int. Conf. on DNS/LES (Ruston, USA, 1997), 137–148
[6] Spalart P. R., Deck S., Shur M., Squires K., Strelets M., Travin A., “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theoretical and Computational Fluid Dynamics, 20 (2006), 181–195 | DOI | Zbl
[7] Shur M. L., Spalart P. R., Strelets M. Kh., Travin A. K., “A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities”, International Journal of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI
[8] Haase W., Braza M., Revell A. (eds.), DESider — A European Effort on Hybrid RANS-LES Modelling, Springer, 2009
[9] Garbaruk A. V., Strelets M. Kh., Shur M. L., Modelirovanie turbulentnosti v raschetakh slozhnykh techenii, Izd-vo Politekhn. un-ta, SPb., 2012, 88 pp.
[10] Spalart P. R., Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows”, 30$^{\mathrm{th}}$ Aerospace Science Meeting, Reno, Nevada, 1992
[11] Smagorinsky J., “General Circulation Experiments with the Primitive Equations. I: The Basic Experiment”, Month. Wea. Rev., 91 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[12] Camarri S., Salvetti M., Koobus V., Dervieux A., “A low-diffusion MUSCL scheme for LES on unstructured grids”, Computers and Fluids, 33:9 (2004), 1101–1129 | DOI | Zbl
[13] Dervieux A., Désedéri J. A., Compressible Flow Solvers using Unstructured Grid, INRIA Report, No 1732, 1992
[14] Abalakin I. V., Kozubskaya T. K., “Skhema povyshennoi tochnosti na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlya resheniya zadach aerodinamiki i aeroakustiki na nestrukturirovannykh setkakh”, Matematicheskoe modelirovanie, 25:8 (2013), 109–136
[15] Fletcher R., Chislennye metody na osnove metoda Galërkina, Mir, M., 1988, 352 pp.
[16] Roe L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[17] Huang L. C., “Pseudo-Unsteady Difference Schemes for Discontinuous Solution of Steady-State, One-Dimensional Fluid Dynamics Problems”, J. Comput. Phys., 42:1 (1981), 195–211 | DOI | MR | Zbl
[18] Saad Y., Iterative methods for sparse linear systems, WEB edition, 3rd ed., 2000
[19] Larrouturou B., “How to Preserve the Mass Fractions Positivity when Computing Compressible Multi-component Flows”, Journal of Computational Physics, 95 (1991), 59–84 | DOI | MR | Zbl
[20] Travin A., Shur M., Strelets M., Spalart P. R., “Physical and numerical upgrades in the Detached-Eddy Simulation of complex turbulent flows”, Advances in LES of Complex Flows, Fluid Mechanics and its Applications, 65, eds. R. Friederich, W. Rodi, Kluwer Academic Publishers, 2004, 239–254 | DOI
[21] Abalakin I. V., Kozubskaya T. K., “Mnogoparametricheskoe semeistvo skhem povyshennoi tochnosti dlya lineinogo uravneniya perenosa”, Matemat. modelirovanie, 19:7 (2007), 56–66 | MR | Zbl
[22] Comte-Bellot G., Corrsin S., “Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, isotropic turbulence”, J. Fluid. Mech., 48 (1971), 273–337 | DOI
[23] Shur M., Spalart P. R., Strelets M., Travin A., “Detached-eddy simulation of an airfoil at high angle of attack”, 4th Int. Symp. On Engineering Turbulence Modelling and Measurements (Corsica, May 24–26, 1999), eds. Rodi W., Laurence D., 669–678
[24] Vogel J. C., Eaton J. K., “Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step”, Journal of Heat Transfer, 107:4 (1985), 922–929 | DOI
[25] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben A. P., Kozubskaya T. K., “Parallelnyi programmnyi kompleks NOISETTE dlya krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125