Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes
Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 4-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the peculiarities of the implementation of hybrid RANS-LES approaches of the DES family for simulation of complex near-wall turbulent flows using unstructured grids. The problems of determining required geometric characteristics in the mesh nodes and adaptation of hybrid approaches to the used numerical approximation scheme with high accuracy in space are considered. The classic benchmark problem of the decay of homogeneous isotropic turbulence and the results of the computation of complex turbulent flow near the wall with the presence of flow separation and reattachment are considered to verify the implemented techniques and to demonstrate its efficiency.
Keywords: simulation of turbulent flows, near-wall flows, hybrid RANS-LES approaches, unstructured mesh, higher-accuracy schemes.
@article{MM_2013_25_9_a1,
     author = {A. P. Duben},
     title = {Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {4--16},
     publisher = {mathdoc},
     volume = {25},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_9_a1/}
}
TY  - JOUR
AU  - A. P. Duben
TI  - Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 4
EP  - 16
VL  - 25
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_9_a1/
LA  - ru
ID  - MM_2013_25_9_a1
ER  - 
%0 Journal Article
%A A. P. Duben
%T Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes
%J Matematičeskoe modelirovanie
%D 2013
%P 4-16
%V 25
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_9_a1/
%G ru
%F MM_2013_25_9_a1
A. P. Duben. Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes. Matematičeskoe modelirovanie, Tome 25 (2013) no. 9, pp. 4-16. http://geodesic.mathdoc.fr/item/MM_2013_25_9_a1/

[1] Casey M., Wintergerste T., Best Practice Guidelines, ERCOFTAC, 2000

[2] Hellsten F., Rautaheimo P. (eds.), Proceedings of 8th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling, Helsinki University of Technology, 1999

[3] Spalart P., “Strategies for Turbulence Modelling and Simulations”, International Journal of Heat and Fluid Flow, 21:3 (2000), 252–263 | DOI

[4] Frohlich J., Terzi D., “Hybrid LES/RANS Methods for the Simulation of Turbulent Flows”, Progress in Aerospace Sciences, 44 (2008), 349–377 | DOI

[5] Spalart R. R., Jou W. H., Strelets M., Allmaras S. R., “Comments op the feasibility of LES for wings, and op a hybrid RANS/LES approach”, Proc. of the First AFOSR Int. Conf. on DNS/LES (Ruston, USA, 1997), 137–148

[6] Spalart P. R., Deck S., Shur M., Squires K., Strelets M., Travin A., “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theoretical and Computational Fluid Dynamics, 20 (2006), 181–195 | DOI | Zbl

[7] Shur M. L., Spalart P. R., Strelets M. Kh., Travin A. K., “A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities”, International Journal of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[8] Haase W., Braza M., Revell A. (eds.), DESider — A European Effort on Hybrid RANS-LES Modelling, Springer, 2009

[9] Garbaruk A. V., Strelets M. Kh., Shur M. L., Modelirovanie turbulentnosti v raschetakh slozhnykh techenii, Izd-vo Politekhn. un-ta, SPb., 2012, 88 pp.

[10] Spalart P. R., Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows”, 30$^{\mathrm{th}}$ Aerospace Science Meeting, Reno, Nevada, 1992

[11] Smagorinsky J., “General Circulation Experiments with the Primitive Equations. I: The Basic Experiment”, Month. Wea. Rev., 91 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] Camarri S., Salvetti M., Koobus V., Dervieux A., “A low-diffusion MUSCL scheme for LES on unstructured grids”, Computers and Fluids, 33:9 (2004), 1101–1129 | DOI | Zbl

[13] Dervieux A., Désedéri J. A., Compressible Flow Solvers using Unstructured Grid, INRIA Report, No 1732, 1992

[14] Abalakin I. V., Kozubskaya T. K., “Skhema povyshennoi tochnosti na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlya resheniya zadach aerodinamiki i aeroakustiki na nestrukturirovannykh setkakh”, Matematicheskoe modelirovanie, 25:8 (2013), 109–136

[15] Fletcher R., Chislennye metody na osnove metoda Galërkina, Mir, M., 1988, 352 pp.

[16] Roe L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[17] Huang L. C., “Pseudo-Unsteady Difference Schemes for Discontinuous Solution of Steady-State, One-Dimensional Fluid Dynamics Problems”, J. Comput. Phys., 42:1 (1981), 195–211 | DOI | MR | Zbl

[18] Saad Y., Iterative methods for sparse linear systems, WEB edition, 3rd ed., 2000

[19] Larrouturou B., “How to Preserve the Mass Fractions Positivity when Computing Compressible Multi-component Flows”, Journal of Computational Physics, 95 (1991), 59–84 | DOI | MR | Zbl

[20] Travin A., Shur M., Strelets M., Spalart P. R., “Physical and numerical upgrades in the Detached-Eddy Simulation of complex turbulent flows”, Advances in LES of Complex Flows, Fluid Mechanics and its Applications, 65, eds. R. Friederich, W. Rodi, Kluwer Academic Publishers, 2004, 239–254 | DOI

[21] Abalakin I. V., Kozubskaya T. K., “Mnogoparametricheskoe semeistvo skhem povyshennoi tochnosti dlya lineinogo uravneniya perenosa”, Matemat. modelirovanie, 19:7 (2007), 56–66 | MR | Zbl

[22] Comte-Bellot G., Corrsin S., “Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, isotropic turbulence”, J. Fluid. Mech., 48 (1971), 273–337 | DOI

[23] Shur M., Spalart P. R., Strelets M., Travin A., “Detached-eddy simulation of an airfoil at high angle of attack”, 4th Int. Symp. On Engineering Turbulence Modelling and Measurements (Corsica, May 24–26, 1999), eds. Rodi W., Laurence D., 669–678

[24] Vogel J. C., Eaton J. K., “Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step”, Journal of Heat Transfer, 107:4 (1985), 922–929 | DOI

[25] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben A. P., Kozubskaya T. K., “Parallelnyi programmnyi kompleks NOISETTE dlya krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125