Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_8_a7, author = {I. V. Abalakin and T. K. Kozubskaya}, title = {Higher accuracy scheme based on edge-oriented {quasi-1{\CYRV}} reconstruction of variables for solving aerodynamics and aeroacoustics problems on unstructured meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--136}, publisher = {mathdoc}, volume = {25}, number = {8}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_8_a7/} }
TY - JOUR AU - I. V. Abalakin AU - T. K. Kozubskaya TI - Higher accuracy scheme based on edge-oriented quasi-1В reconstruction of variables for solving aerodynamics and aeroacoustics problems on unstructured meshes JO - Matematičeskoe modelirovanie PY - 2013 SP - 109 EP - 136 VL - 25 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_8_a7/ LA - ru ID - MM_2013_25_8_a7 ER -
%0 Journal Article %A I. V. Abalakin %A T. K. Kozubskaya %T Higher accuracy scheme based on edge-oriented quasi-1В reconstruction of variables for solving aerodynamics and aeroacoustics problems on unstructured meshes %J Matematičeskoe modelirovanie %D 2013 %P 109-136 %V 25 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2013_25_8_a7/ %G ru %F MM_2013_25_8_a7
I. V. Abalakin; T. K. Kozubskaya. Higher accuracy scheme based on edge-oriented quasi-1В reconstruction of variables for solving aerodynamics and aeroacoustics problems on unstructured meshes. Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 109-136. http://geodesic.mathdoc.fr/item/MM_2013_25_8_a7/
[1] Stolarski T., Nakasone Y., Yoshimoto S., Engineering Analysis with ANSYS Software, Elsevier, Butterworth–Heinemann, 2006
[2] Fluent. User's Guide Fluent 6.3.26, Fluent Incorporated, Lebanon, NH, 2006
[3] Li B. Q., Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Springer, London, 2006 | MR
[4] Zhang Y.-T., Shu C.-W., “Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes”, Commun. Comput. Phys., 5:2–4 (2009), 836–848 | MR
[5] Dumbser M., Kaser M., “Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems”, J. Comput. Phys., 221:2 (2007), 693–723 | DOI | MR | Zbl
[6] Tsoutsanis P., Titarev V. A., Drikakis D., “WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions”, J. Comput. Phys., 230:2 (2011), 1585–1601 | DOI | MR | Zbl
[7] Wolf W. R., Azevedo J. L. F., “High-order ENO and WENO schemes for unstructured grids”, Int. J. Numer. Meth. Fluids, 55:10 (2007), 917–943 | DOI | MR | Zbl
[8] Debiez S., Approximations decentrees a faible dissipation pour des problemes hyperboliques, INRIA Report 2811, Février, 1996
[9] Abalakin I. V., Kozubskaya T. K., Dervieux A., “High Accuracy Finite Volume Method for Solving Nonlinear Aeroacoustics Problems on Unstructured Meshes”, Chinese Journal of Aeronautics, 19:2 (2006), 97–104 | DOI | MR
[10] Abalakin I. V., Kozubskaya T. K., “Mnogoparametricheskoe semeistvo skhem povyshennoi tochnosti dlya lineinogo uravneniya perenosa”, Matematich. modelirov., 19:7 (2007), 56–66 | MR | Zbl
[11] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Sib. otd., Novosibirsk, 1985, 364 pp. | MR | Zbl
[12] Oran E., Boris Dzh., Chislennoe modelirovanie reagiruyuschikh potokov, Mir, M., 1990, 660 pp. | MR
[13] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper 85-0363, New York, 1985
[14] Roe P. L., “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes”, J. Comput. Phys., 43:2 (1981), 357–372 | DOI | MR | Zbl
[15] Wu H., Wang L., “Non-existence of third order accurate semi-discrete MUSCL-type schemes for nonlinear conservation laws and unified construction of high accurate ENO schemes”, Proceedings of the 6th International Symposium on CFD (Lake Tahoe, USA, September 4–8, 1995)
[16] Huang L. C., “Pseudo-Unsteady Difference Schemes for Discontinuous Solution of Steady-State, One-Dimensional Fluid Dynamics Problems”, J. Comput. Phys., 42:1 (1981), 195–211 | DOI | MR | Zbl
[17] Gourvitch N., Rogé G., Abalakin I., Dervieux A., Kozubskaya T., A tetrahedral-based superconvergent scheme for aeroacoustics, INRIA Report 5212, May, 2004
[18] Jameson A., Numerical Solution of the Euler Equations for Compressible inviscid Fluids, Numerical. Methods for the Euler Equations of Fluid Dynamics, SIAM, Philadelphia, 1985, 199 pp. | MR | Zbl
[19] Proceedings of ICASE/LaRC. Workshop on Benchmark Problems in Computational Aeroacoustics (CAA) (May 1995), NASA Conference Publication, 3300, eds. J. C. Hardin, J. R. Ristorcelli, C. K. W. Tam
[20] Tam C. K. W., Webb J. C., “Dispersion-relation-preserving finite-difference schemes for computational acoustics”, J. Comput. Phys., 107:2 (1993), 262–281 | DOI | MR | Zbl
[21] Kozubskaya T., Abalakin I., Dervieux A., Ouvrard H., “Accuracy Improvement for Finite-Volume Vertex-Centered Schemes Solving Aeroacoustics Problems on Unstructured Meshes”, 16th AIAA/CEAS Aeroacoustics Conference (Stockholm, Sweden, June 2010); AIAA paper 2010-3933, 2010
[22] Abalakin I. V., Derve A., Kozubskaya T. K., Uvrar Kh., “Metodika povysheniya tochnosti pri modelirovanii perenosa akusticheskikh vozmuschenii na nestrukturirovannykh setkakh”, Uchenye zapiski TsAGI, XLI:1 (2010), 110–125
[23] Abalakin I. V., Bakhvalov P. A., Gorobets A. V., Duben A. P., Kozubskaya T. K., “Parallelnyi programmnyi kompleks NOISETTE dlya krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 110–125
[24] Volkov K. N., Emelyanov V. N., Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fizmatlit, M., 2008, 368 pp.
[25] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. of Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl