Numerical modeling elasto-plastic flows by using a Godunov method with moving Eulerian grids
Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 89-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper addresses a numerical method for calculating elasto-plastic flows on arbitrary moving Eulerian grids. The Prandtl-Reus model is implemented in the system of governing equations to describe elasto-plastic properties of solids in dynamical processes. The spatial discretization of the equations is carried out with the Godunov method applied to a moving Eulerian grid. Piecewise-linear cell data reconstruction is implemented using a MUSCL-type interpolation procedure with generalization on unstructured grids to improve accuracy of the scheme. The main idea of method is composed of splitting system of governing equations into hydrodynamical and elastoplastic components. The hydrodynamical part of equations is updated in time with an absolutely stable explicit-implicit time marching scheme. The solution to the constitutive equations is obtained with the second order Runge–Kutta scheme. The theoretical analysis is carried out and analytical solutions are presented that describe the shock-wave structure and the structure of a rarefaction wave in elasto-plastic materials under uniaxial deformation assumption. The method is verified by calculating the problems with presented analytical solutions, and also comparing on some test problems calculated by other authors with different numerical methods.
Keywords: Godunov numerical method, elasto-plastic flow, moving computational grid.
@article{MM_2013_25_8_a6,
     author = {Igor Menshov and Alexander Mischenko and Alexey Serejkin},
     title = {Numerical modeling elasto-plastic flows by using a {Godunov} method with moving {Eulerian} grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--108},
     publisher = {mathdoc},
     volume = {25},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/}
}
TY  - JOUR
AU  - Igor Menshov
AU  - Alexander Mischenko
AU  - Alexey Serejkin
TI  - Numerical modeling elasto-plastic flows by using a Godunov method with moving Eulerian grids
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 89
EP  - 108
VL  - 25
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/
LA  - ru
ID  - MM_2013_25_8_a6
ER  - 
%0 Journal Article
%A Igor Menshov
%A Alexander Mischenko
%A Alexey Serejkin
%T Numerical modeling elasto-plastic flows by using a Godunov method with moving Eulerian grids
%J Matematičeskoe modelirovanie
%D 2013
%P 89-108
%V 25
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/
%G ru
%F MM_2013_25_8_a6
Igor Menshov; Alexander Mischenko; Alexey Serejkin. Numerical modeling elasto-plastic flows by using a Godunov method with moving Eulerian grids. Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 89-108. http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/

[1] Zukas J. A., Nicholas T., Swift H. F., Gresczuk L. B., Curran D. R., Impact Dynamics, Wiley, New York, 1982

[2] Keyfitz B. L., Kranzer H. C., “A system of non-strictly hyperbolic conservation laws arising in elastic theory”, Arch. Rat. Mech. Anal., 72 (1980), 220 | DOI | MR

[3] Tang A., Ting T., “Wave curves for the Riemann problem of plane waves in elastic solids”, Int. J. Eng. Sci., 25 (1987), 1343 | DOI | Zbl

[4] Trangenstein J. A., Pember R. B., “The Riemann problem for longitudinal motion in an elastic-plastic bar”, SIAM J. Sci. Stat. Comput., 12 (1991), 180 | DOI | MR | Zbl

[5] Gavrilyuk S. L., Favrie N., Saurel R., “Modelling wave dynamics of compressible elastic materials”, J. Comp. Phys., 227 (2008), 2941 | DOI | MR | Zbl

[6] Abuzyarov M. Kh., Bazhenov V. G., Kotov V. L., Kochetkov A. V., Krylov S. V., Feldgun V. R., “Metod raspada razryvov v dinamike uprugoplasticheskikh sred”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:6 (2000), 940–953 | MR | Zbl

[7] Bazhenov V. G., Kotov V. L., “Modifikatsiya chislennoi skhemy Godunova dlya resheniya zadach impulsnogo nagruzheniya myagkikh gruntov”, Prikladnaya mekhanika i tekhnicheskaya fizika, 43:4 (2002), 139–149 | MR | Zbl

[8] Wilkins M. L., Computer simulation of dynamic phenomena, Springer-Verlag, Berlin–Heidelberg–New York, 1999, 246 pp. | MR

[9] Udaykumar H. S., Tran L., Belk D. M., Vanden K. J., “An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces”, Journal of Computational Physics, 186 (2003), 136–177 | DOI | Zbl

[10] Menshov I. S., Ispolzovanie edinogo uravneniya sostoyaniya dlya opisaniya techenii neodnorodnykh sred, Preprint In-ta prikladnoi mekhaniki, 1982

[11] Stein E., Rüter M., Ohnimus S., “Adaptive finite element analysis and modelling of solids and structures. Findings, problems and trends”, International Journal for Numerical Methods in Engineering, 60 (2004), 103–138 | DOI | MR | Zbl

[12] Hallquist J. O., LS-DYNA Theory Manual, 2009

[13] Liu G. R., Liu M. B., Smoothed Particle Hydrodynamics: a meshfree particle method, World Scientific, Singapore, 2003

[14] Loub'ere R., Maire P.-H., Shashkov M., Breil J., Galera S., “ReALE: A Reconnectionbased Arbitrary-Lagrangian-Eulerian Method”, J. Comput. Phys., 229:12 (2010), 4724–4761 | DOI | MR | Zbl

[15] Yanenko N. N., The method of fractional steps, Springer-Verlag, Berlin, 1971 | MR | Zbl

[16] Marchuk G. I., Methods of numerical mathematics, Springer-Verlag, New York, 1975 | MR

[17] Korotin P. N., Petrov I. B., Kholodov A. S., “Chislennoe modelirovanie povedeniya uprugikh i uprugoplasticheskikh tel pod vozdeistviem moschnykh energeticheskikh potokov”, Matem. modelirovanie, 1:7 (1989), 1–12 | Zbl

[18] Petrov I. B., Chelnokov F. B., “Chislennoe issledovanie volnovykh protsessov i protsessov razrusheniya v mnogosloinykh pregradakh”, ZhVMiMF, 43:10 (2003), 1562–1579 | MR | Zbl

[19] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl

[20] Ivanov V. D., Kondaurov V. I., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–28 | MR

[21] Anderson W. K., Thomas J. L., Van Leer B., “Comparison of finite volume flux vector splittings for the Euler equation”, AIAA Journal, 24:9 (1986), 1453 | DOI

[22] Collins J. P., Colella P., Glaz H. M., “An implicit-explicit Eulerian Godunov scheme for compressible flow”, Jour. of Comp. Phys., 116 (1995), 195 | DOI | MR | Zbl

[23] Menshov I., Nakamura Y., “Hybrid explicit-implicit, unconditionally spable scheme for unsteady compressible flows”, AIAA Journal, 42:3 (2004), 551 | DOI

[24] Van Leer B., “Towards the ultimate conservative difference scheme. II: Monotonicity and conservation combined in a second order scheme”, Jour. of Comp. Phys., 14 (1974), 361 | DOI | Zbl

[25] Menshov I., Nakamura Y., “Implementation of the LU-SGS method for an arbitrary finite-volume discretization”, Proc. of 9th Conference of CFD (Tokyo, 1995), 123

[26] Rusanov V. V., “Raschet vzaimodeistviya nestatsionarnykh udarnykh voln s prepyatstviyami”, Vychisl. matem. i matem. fiz., 1:2 (1961), 267–279 | MR

[27] Howel B. P., Ball G. J., “A Free-Lagrange Augmented Godunov Method for the Simulation of Elastic-Plastic Solids”, Journal of Computational Physics, 175 (2003), 128–167 | DOI