Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_8_a6, author = {Igor Menshov and Alexander Mischenko and Alexey Serejkin}, title = {Numerical modeling elasto-plastic flows by using a {Godunov} method with moving {Eulerian} grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {89--108}, publisher = {mathdoc}, volume = {25}, number = {8}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/} }
TY - JOUR AU - Igor Menshov AU - Alexander Mischenko AU - Alexey Serejkin TI - Numerical modeling elasto-plastic flows by using a Godunov method with moving Eulerian grids JO - Matematičeskoe modelirovanie PY - 2013 SP - 89 EP - 108 VL - 25 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/ LA - ru ID - MM_2013_25_8_a6 ER -
%0 Journal Article %A Igor Menshov %A Alexander Mischenko %A Alexey Serejkin %T Numerical modeling elasto-plastic flows by using a Godunov method with moving Eulerian grids %J Matematičeskoe modelirovanie %D 2013 %P 89-108 %V 25 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/ %G ru %F MM_2013_25_8_a6
Igor Menshov; Alexander Mischenko; Alexey Serejkin. Numerical modeling elasto-plastic flows by using a Godunov method with moving Eulerian grids. Matematičeskoe modelirovanie, Tome 25 (2013) no. 8, pp. 89-108. http://geodesic.mathdoc.fr/item/MM_2013_25_8_a6/
[1] Zukas J. A., Nicholas T., Swift H. F., Gresczuk L. B., Curran D. R., Impact Dynamics, Wiley, New York, 1982
[2] Keyfitz B. L., Kranzer H. C., “A system of non-strictly hyperbolic conservation laws arising in elastic theory”, Arch. Rat. Mech. Anal., 72 (1980), 220 | DOI | MR
[3] Tang A., Ting T., “Wave curves for the Riemann problem of plane waves in elastic solids”, Int. J. Eng. Sci., 25 (1987), 1343 | DOI | Zbl
[4] Trangenstein J. A., Pember R. B., “The Riemann problem for longitudinal motion in an elastic-plastic bar”, SIAM J. Sci. Stat. Comput., 12 (1991), 180 | DOI | MR | Zbl
[5] Gavrilyuk S. L., Favrie N., Saurel R., “Modelling wave dynamics of compressible elastic materials”, J. Comp. Phys., 227 (2008), 2941 | DOI | MR | Zbl
[6] Abuzyarov M. Kh., Bazhenov V. G., Kotov V. L., Kochetkov A. V., Krylov S. V., Feldgun V. R., “Metod raspada razryvov v dinamike uprugoplasticheskikh sred”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 40:6 (2000), 940–953 | MR | Zbl
[7] Bazhenov V. G., Kotov V. L., “Modifikatsiya chislennoi skhemy Godunova dlya resheniya zadach impulsnogo nagruzheniya myagkikh gruntov”, Prikladnaya mekhanika i tekhnicheskaya fizika, 43:4 (2002), 139–149 | MR | Zbl
[8] Wilkins M. L., Computer simulation of dynamic phenomena, Springer-Verlag, Berlin–Heidelberg–New York, 1999, 246 pp. | MR
[9] Udaykumar H. S., Tran L., Belk D. M., Vanden K. J., “An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces”, Journal of Computational Physics, 186 (2003), 136–177 | DOI | Zbl
[10] Menshov I. S., Ispolzovanie edinogo uravneniya sostoyaniya dlya opisaniya techenii neodnorodnykh sred, Preprint In-ta prikladnoi mekhaniki, 1982
[11] Stein E., Rüter M., Ohnimus S., “Adaptive finite element analysis and modelling of solids and structures. Findings, problems and trends”, International Journal for Numerical Methods in Engineering, 60 (2004), 103–138 | DOI | MR | Zbl
[12] Hallquist J. O., LS-DYNA Theory Manual, 2009
[13] Liu G. R., Liu M. B., Smoothed Particle Hydrodynamics: a meshfree particle method, World Scientific, Singapore, 2003
[14] Loub'ere R., Maire P.-H., Shashkov M., Breil J., Galera S., “ReALE: A Reconnectionbased Arbitrary-Lagrangian-Eulerian Method”, J. Comput. Phys., 229:12 (2010), 4724–4761 | DOI | MR | Zbl
[15] Yanenko N. N., The method of fractional steps, Springer-Verlag, Berlin, 1971 | MR | Zbl
[16] Marchuk G. I., Methods of numerical mathematics, Springer-Verlag, New York, 1975 | MR
[17] Korotin P. N., Petrov I. B., Kholodov A. S., “Chislennoe modelirovanie povedeniya uprugikh i uprugoplasticheskikh tel pod vozdeistviem moschnykh energeticheskikh potokov”, Matem. modelirovanie, 1:7 (1989), 1–12 | Zbl
[18] Petrov I. B., Chelnokov F. B., “Chislennoe issledovanie volnovykh protsessov i protsessov razrusheniya v mnogosloinykh pregradakh”, ZhVMiMF, 43:10 (2003), 1562–1579 | MR | Zbl
[19] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl
[20] Ivanov V. D., Kondaurov V. I., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–28 | MR
[21] Anderson W. K., Thomas J. L., Van Leer B., “Comparison of finite volume flux vector splittings for the Euler equation”, AIAA Journal, 24:9 (1986), 1453 | DOI
[22] Collins J. P., Colella P., Glaz H. M., “An implicit-explicit Eulerian Godunov scheme for compressible flow”, Jour. of Comp. Phys., 116 (1995), 195 | DOI | MR | Zbl
[23] Menshov I., Nakamura Y., “Hybrid explicit-implicit, unconditionally spable scheme for unsteady compressible flows”, AIAA Journal, 42:3 (2004), 551 | DOI
[24] Van Leer B., “Towards the ultimate conservative difference scheme. II: Monotonicity and conservation combined in a second order scheme”, Jour. of Comp. Phys., 14 (1974), 361 | DOI | Zbl
[25] Menshov I., Nakamura Y., “Implementation of the LU-SGS method for an arbitrary finite-volume discretization”, Proc. of 9th Conference of CFD (Tokyo, 1995), 123
[26] Rusanov V. V., “Raschet vzaimodeistviya nestatsionarnykh udarnykh voln s prepyatstviyami”, Vychisl. matem. i matem. fiz., 1:2 (1961), 267–279 | MR
[27] Howel B. P., Ball G. J., “A Free-Lagrange Augmented Godunov Method for the Simulation of Elastic-Plastic Solids”, Journal of Computational Physics, 175 (2003), 128–167 | DOI