EUV-source modeling with account of detailed level kinetics included in-line into gasdynamic calculations
Matematičeskoe modelirovanie, Tome 25 (2013) no. 7, pp. 89-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of nonstationary non-equilibrium radiative plasma with accounting for level kinetics and radiative transport in spectral lines is constructed. The modeling of spherical target explosion and emmision as a result of laser pulse is carried out. Numerical calculation of two-temperature 1D Lagrangian equations of gasdynamics is realized. Radiation field and level kinetics are accounted self-consistently by using two different approaches: using interpolation between precalculated tables of spectral parameters and with account of detailed level kinetics included in-line into gasdynamic calculations. The efficiency of extreme ultraviolet source based on lithium and tin laser plasma is estimated. The results have a significant value for EUV-lithography, wich is used in microchip production. Obtained efficiency of EUV-source at optimal parameters of laser pulse is $\sim1\%$ for lithium and $\sim5\%$ for tin, that is close to experimental data.
Keywords: detailed level kinetics, extreme ultraviolet, laser produced plasma, radiative gasdynamics.
@article{MM_2013_25_7_a6,
     author = {D. A. Kim and V. G. Novikov and G. V. Dolgoleva and K. N. Koshelev and A. D. Solomyannaya},
     title = {EUV-source modeling with account of detailed level kinetics included in-line into gasdynamic calculations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {25},
     number = {7},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_7_a6/}
}
TY  - JOUR
AU  - D. A. Kim
AU  - V. G. Novikov
AU  - G. V. Dolgoleva
AU  - K. N. Koshelev
AU  - A. D. Solomyannaya
TI  - EUV-source modeling with account of detailed level kinetics included in-line into gasdynamic calculations
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 89
EP  - 102
VL  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_7_a6/
LA  - ru
ID  - MM_2013_25_7_a6
ER  - 
%0 Journal Article
%A D. A. Kim
%A V. G. Novikov
%A G. V. Dolgoleva
%A K. N. Koshelev
%A A. D. Solomyannaya
%T EUV-source modeling with account of detailed level kinetics included in-line into gasdynamic calculations
%J Matematičeskoe modelirovanie
%D 2013
%P 89-102
%V 25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_7_a6/
%G ru
%F MM_2013_25_7_a6
D. A. Kim; V. G. Novikov; G. V. Dolgoleva; K. N. Koshelev; A. D. Solomyannaya. EUV-source modeling with account of detailed level kinetics included in-line into gasdynamic calculations. Matematičeskoe modelirovanie, Tome 25 (2013) no. 7, pp. 89-102. http://geodesic.mathdoc.fr/item/MM_2013_25_7_a6/

[1] V. Bakshi (ed.), EUV Source Technology: Challenges and Status, EUV Sources for Lithography, SPIE Press, Bellingham, Washington, USA, 2006 | DOI

[2] K. N. Koshelev, V. V. Ivanov, V. G. Novikov, V. Medvedev, A. S. Grushin, V. M. Krivtsun, “RZLINE code modeling of distributed tin targets for laser-produced plasma sources of extreme ultraviolet radiation”, Journal of Micro/Nanolithography. MEMS, and MOEMS(JM3), 11:2 (2012)

[3] M. F. Gu, FAC, , Stanford University http://kipac-tree.stanford.edu/fac

[4] R. D. Cowan et al., CATS, , Los Alamos National Laboratory, Los Alamos, New Mexico http://aphysics2.lanl.gov/tempweb

[5] Yu. Ralchenko, A. E. Kramida, J. Reader and NIST ASD Team, NIST Atomic Spectra Database (ver. 4.1.0), National Institute of Standards and Technology, Gaithersburg, MD, 2011 (Date of access: 2012, June 22) http://physics.nist.gov/asd

[6] I. Yu. Tolstikhina, S. S. Churilov, A. N. Ryabtsev, K. N. Koshelev, “Atomic Tin Data”, EUV Sources for Lithography, 113, ed. V. Bakshi, SPIE Press, Bellingham, WA, 2005

[7] V. G. Novikov, K. N. Koshelev, A. D. Solomyannaya, “Radiative unresolved spectra atomic model”, Physics of Extreme States of Matter, Chernogolovka, 2010, 21–24

[8] A. F. Nikiforov, V. G. Novikov, V. B. Uvarov, Quantum-statistical models of hot dense matter: methods for calculation opacity and equation of state, Birkhauser, Basel–Boston–Berlin, 2005 | MR | Zbl

[9] V. G. Novikov, A. D. Solomyannaya, “Spektralnye kharakteristiki plazmy, soglasovannye s izlucheniem”, TVT, 36:6 (1998), 858–864

[10] S. A. Belkov, G. V. Dolgoleva, “Model srednego iona dlya rascheta kinetiki ionizatsii, naselennostei vozbuzhdennykh urovnei i spektralnykh koeffitsientov perenosa izlucheniya v programme SNDP”, VANT. Ser. Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1992, no. 1, 59–61

[11] L. A. Vainshtein, I. I. Sobelman, E. A. Yukov, Vozbuzhdenie atomov i ushirenie spektralnykh linii, Nauka, M., 1979

[12] D. Mikhalas, Zvezdnye atmosfery, v. 1, 2, Mir, M., 1982

[13] I. I. Sobelman, Vvedenie v teoriyu atomnykh spektrov, Nauka, M., 1977

[14] V. G. Novikov, V. V. Ivanov, K. N. Koshelev, V. M. Krivtsun, A. D. Solomyannaya, “Calculation of tin emission spectra in discharge plasma: The influence of reabsorption in spectral lines”, High Energy Density Physics, 3:1–2 (2007), 198–203 | DOI

[15] S. A. George, W. T. Silfvast, K. Takenoshita, R. T. Bernath, C. Koay, G. Shimkaveg, M. C. Richardson, “Comparative extreme ultraviolet emission measurements for lithium and tin laser plasmas”, Opt. Lett., 32 (2007), 997–999 | DOI