Asymptotic Burnett model of the gas flow in a thin shock layer near cylinder
Matematičeskoe modelirovanie, Tome 25 (2013) no. 7, pp. 69-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simplification of the full Burnett equations in reference to task of the rarefied gas hypersonic cross-flow around the circular cylinder is made on the basis of the two-layer ideology of a thin viscous shock layer theory for the non-thin bodies, assumed two (smear shock + own shock layer) specific regions (layers) between the free-stream flow and the streamlined surface. The common compositional system of the equations, described the flow in the whole of the thin shock layer, included both his above-mentioned structural regions (sublayers), is formulated. Unlike the full Burnett equations, the obtained Burnett thin shock layer equations have the order not exceeded the order of the Navier–Stokes hypersonic thin shock layer task, whose instrument of investigation is worked out well enough.
Keywords: Burnett equations, hypersonic flow, thin shock layer, circular cylinder.
@article{MM_2013_25_7_a5,
     author = {A. L. Ankudinov},
     title = {Asymptotic {Burnett} model of the gas flow in a thin shock layer near cylinder},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--88},
     publisher = {mathdoc},
     volume = {25},
     number = {7},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_7_a5/}
}
TY  - JOUR
AU  - A. L. Ankudinov
TI  - Asymptotic Burnett model of the gas flow in a thin shock layer near cylinder
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 69
EP  - 88
VL  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_7_a5/
LA  - ru
ID  - MM_2013_25_7_a5
ER  - 
%0 Journal Article
%A A. L. Ankudinov
%T Asymptotic Burnett model of the gas flow in a thin shock layer near cylinder
%J Matematičeskoe modelirovanie
%D 2013
%P 69-88
%V 25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_7_a5/
%G ru
%F MM_2013_25_7_a5
A. L. Ankudinov. Asymptotic Burnett model of the gas flow in a thin shock layer near cylinder. Matematičeskoe modelirovanie, Tome 25 (2013) no. 7, pp. 69-88. http://geodesic.mathdoc.fr/item/MM_2013_25_7_a5/

[1] Maxwel J. C., On the Dynamical Theory of Gases, The Scientific Papers No 2, Camb. Univ. Press, 1890 | Zbl

[2] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967, 440 pp.

[3] Galkin V. S., Shavaliev M. Sh., “Gazodinamicheskie uravneniya vysshikh priblizhenii metoda Chepmena–Enskoga”, Izv. RAN. MZhG, 1998, no. 4, 3–28 | MR | Zbl

[4] Zhong X., MacCormack R. W., Chapman D. R., “Stabilization of the Burnett Equations and Application to Hypersonic Flows”, AIAA Journal, 31:6, June (1993) | DOI

[5] Lumpkin F. E., Chapman D. R., “Accuracy of the Burnett Equations for Hypersonic Real Gas Flows”, AIAA Journal, 6:3, July–Sept. (1992)

[6] Ankudinov A. L., “Asimptoticheskaya model tonkogo udarnogo sloya okolo klina/konusa dlya priblizheniya Barnetta”, Matematicheskoe modelirovanie, 22:8 (2010), 24–32 | MR | Zbl

[7] Lin T. C., Street R. E., Effect of variable viscosity and thermal conductivity on high-speed slip flow between concentric cylinders, Rep.No 1175, National advisory committee for aeronautics, 1954 | MR | Zbl

[8] Cheng H. K., The blunt body problem in hypersonic flow at low Reynolds number, IAS Paper No 63-92, 1963, 100 pp.

[9] Ankudinov A. L., “Raschet vyazkogo giperzvukovogo obtekaniya pri umerennykh chislakh Reinoldsa”, Tr. TsAGI, 1106, 1968, 176–191

[10] Mingalev I. V., Mingalev O. V., Mingalev V. S., “Obobschennaya nyutonovskaya reologicheskaya model dlya laminarnykh i turbulentnykh techenii”, Matem. modelir., 11:11 (1999), 39–63

[11] Vedenyapin V. V., Kineticheskaya teoriya po Maksvellu, Boltsmanu i Vlasovu, MGOU, M., 2005

[12] Galkin V. S., Rusakov S. V., “Barnettovy modeli struktury silnoi udarnoi volny v binarnoi smesi odnoatomnykh gazov”, Prikladnaya matemat. i mekhanika, 67:1 (2003), 131–143

[13] Galkin V. S., Rusakov S. V., “Barnettova model struktury udarnoi volny v molekulyarnom gaze”, Prikladnaya matematika i mekhanika, 69:3 (2005), 419–426 | MR | Zbl

[14] Cheng H. K., Emmanuel G., “Perspective on hypersonic nonequilibrium flow”, AIAA J., 33:3 (1995), 385–400 | DOI | Zbl

[15] Nikolskii V. S., “Kineticheskaya model giperzvukovykh techenii razrezhennogo gaza”, Matematicheskoe modelirovanie, 8:12 (1996), 29–46 | MR

[16] Cheng H. K., “The viscous shock layer problem revisited”, Proc. International Conference of Research in Hypersonic Technologies (Zhukovsky, Russia, Sept. 19–21, 1994), 1–16

[17] Kuznetsov M. M., Nikolskii V. S., “Kineticheskii analiz giperzvukovykh vyazkikh techenii mnogoatomnogo gaza v tonkom trekhmernom udarnom sloe”, Uchenye zapiski TsAGI, 16:3 (1985), 38–49 | MR

[18] Ankudinov A. L., “Donnyi neravnovesnyi struinyi pogranichnyi sloi v mnogoatomnom gaze”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1499–1505 | MR | Zbl

[19] Ankudinov A. L., “Raschet vyazkogo giperzvukovogo udarnogo sloya s podvodom massy pri umerenno malykh chislakh Reinoldsa”, Izv. AN SSSR, MZhG, 1970, no. 3, 40–45

[20] Ankudinov A. L., “Chislennoe reshenie uravnenii tonkogo vyazkogo udarnogo sloya”, Tr. TsAGI, 1845, 1977, 1–93

[21] Ankudinov A. L., “Ob odnoi raznostnoi skheme rascheta vyazkogo udarnogo sloya”, Tr. TsAGI, 2107, 1981, 154–160

[22] Gershbein E. A., Peigin S. V., Tirskii G. A., “Sverkhzvukovoe obtekanie tel pri malykh i umerennykh chislakh Reinoldsa”, obzor, Itogi nauki i tekhniki. VINITI. Ser. Mekhanika zhidkosti i gaza, 19, 1985, 3–85