Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_7_a5, author = {A. L. Ankudinov}, title = {Asymptotic {Burnett} model of the gas flow in a thin shock layer near cylinder}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {69--88}, publisher = {mathdoc}, volume = {25}, number = {7}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_7_a5/} }
A. L. Ankudinov. Asymptotic Burnett model of the gas flow in a thin shock layer near cylinder. Matematičeskoe modelirovanie, Tome 25 (2013) no. 7, pp. 69-88. http://geodesic.mathdoc.fr/item/MM_2013_25_7_a5/
[1] Maxwel J. C., On the Dynamical Theory of Gases, The Scientific Papers No 2, Camb. Univ. Press, 1890 | Zbl
[2] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967, 440 pp.
[3] Galkin V. S., Shavaliev M. Sh., “Gazodinamicheskie uravneniya vysshikh priblizhenii metoda Chepmena–Enskoga”, Izv. RAN. MZhG, 1998, no. 4, 3–28 | MR | Zbl
[4] Zhong X., MacCormack R. W., Chapman D. R., “Stabilization of the Burnett Equations and Application to Hypersonic Flows”, AIAA Journal, 31:6, June (1993) | DOI
[5] Lumpkin F. E., Chapman D. R., “Accuracy of the Burnett Equations for Hypersonic Real Gas Flows”, AIAA Journal, 6:3, July–Sept. (1992)
[6] Ankudinov A. L., “Asimptoticheskaya model tonkogo udarnogo sloya okolo klina/konusa dlya priblizheniya Barnetta”, Matematicheskoe modelirovanie, 22:8 (2010), 24–32 | MR | Zbl
[7] Lin T. C., Street R. E., Effect of variable viscosity and thermal conductivity on high-speed slip flow between concentric cylinders, Rep.No 1175, National advisory committee for aeronautics, 1954 | MR | Zbl
[8] Cheng H. K., The blunt body problem in hypersonic flow at low Reynolds number, IAS Paper No 63-92, 1963, 100 pp.
[9] Ankudinov A. L., “Raschet vyazkogo giperzvukovogo obtekaniya pri umerennykh chislakh Reinoldsa”, Tr. TsAGI, 1106, 1968, 176–191
[10] Mingalev I. V., Mingalev O. V., Mingalev V. S., “Obobschennaya nyutonovskaya reologicheskaya model dlya laminarnykh i turbulentnykh techenii”, Matem. modelir., 11:11 (1999), 39–63
[11] Vedenyapin V. V., Kineticheskaya teoriya po Maksvellu, Boltsmanu i Vlasovu, MGOU, M., 2005
[12] Galkin V. S., Rusakov S. V., “Barnettovy modeli struktury silnoi udarnoi volny v binarnoi smesi odnoatomnykh gazov”, Prikladnaya matemat. i mekhanika, 67:1 (2003), 131–143
[13] Galkin V. S., Rusakov S. V., “Barnettova model struktury udarnoi volny v molekulyarnom gaze”, Prikladnaya matematika i mekhanika, 69:3 (2005), 419–426 | MR | Zbl
[14] Cheng H. K., Emmanuel G., “Perspective on hypersonic nonequilibrium flow”, AIAA J., 33:3 (1995), 385–400 | DOI | Zbl
[15] Nikolskii V. S., “Kineticheskaya model giperzvukovykh techenii razrezhennogo gaza”, Matematicheskoe modelirovanie, 8:12 (1996), 29–46 | MR
[16] Cheng H. K., “The viscous shock layer problem revisited”, Proc. International Conference of Research in Hypersonic Technologies (Zhukovsky, Russia, Sept. 19–21, 1994), 1–16
[17] Kuznetsov M. M., Nikolskii V. S., “Kineticheskii analiz giperzvukovykh vyazkikh techenii mnogoatomnogo gaza v tonkom trekhmernom udarnom sloe”, Uchenye zapiski TsAGI, 16:3 (1985), 38–49 | MR
[18] Ankudinov A. L., “Donnyi neravnovesnyi struinyi pogranichnyi sloi v mnogoatomnom gaze”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1499–1505 | MR | Zbl
[19] Ankudinov A. L., “Raschet vyazkogo giperzvukovogo udarnogo sloya s podvodom massy pri umerenno malykh chislakh Reinoldsa”, Izv. AN SSSR, MZhG, 1970, no. 3, 40–45
[20] Ankudinov A. L., “Chislennoe reshenie uravnenii tonkogo vyazkogo udarnogo sloya”, Tr. TsAGI, 1845, 1977, 1–93
[21] Ankudinov A. L., “Ob odnoi raznostnoi skheme rascheta vyazkogo udarnogo sloya”, Tr. TsAGI, 2107, 1981, 154–160
[22] Gershbein E. A., Peigin S. V., Tirskii G. A., “Sverkhzvukovoe obtekanie tel pri malykh i umerennykh chislakh Reinoldsa”, obzor, Itogi nauki i tekhniki. VINITI. Ser. Mekhanika zhidkosti i gaza, 19, 1985, 3–85