Joint application of the incomplete Galerkin’s method and scattering matrix method for multilayer diffraction grating modeling
Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 41-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of wave diffraction on a one-dimensional multilayer periodic grating is considered. A rigorous mathematical statement is given, where the partial radiations conditions are used for domain confinement. A complete formulation of the numerical algorithm based on a combination of the incomplete Galerkin's method and scattering matrix method is presented. The rate of convergence and computational complexity of this algorithm are analyzed and the advisable values of computational parameters are presented.
Keywords: multilayer diffraction grating, incomplete Galerkin’s method, scattering matrix method.
@article{MM_2013_25_6_a3,
     author = {A. A. Petukhov},
     title = {Joint application of the incomplete {Galerkin{\textquoteright}s} method and scattering matrix method for multilayer diffraction grating modeling},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--53},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_6_a3/}
}
TY  - JOUR
AU  - A. A. Petukhov
TI  - Joint application of the incomplete Galerkin’s method and scattering matrix method for multilayer diffraction grating modeling
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 41
EP  - 53
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_6_a3/
LA  - ru
ID  - MM_2013_25_6_a3
ER  - 
%0 Journal Article
%A A. A. Petukhov
%T Joint application of the incomplete Galerkin’s method and scattering matrix method for multilayer diffraction grating modeling
%J Matematičeskoe modelirovanie
%D 2013
%P 41-53
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_6_a3/
%G ru
%F MM_2013_25_6_a3
A. A. Petukhov. Joint application of the incomplete Galerkin’s method and scattering matrix method for multilayer diffraction grating modeling. Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 41-53. http://geodesic.mathdoc.fr/item/MM_2013_25_6_a3/

[1] Palmer Ch., Loewen E., Diffraction Grating Handbook, 6$^{\mathrm{th}}$ edition, Newport Corporation, 2005

[2] Ichikawa H., “Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method”, J. Opt. Soc. Am. A, 15:1 (1998), 152–157 | DOI

[3] Moaveni M. K., Kalhor H. A., Shammas S., “Application of finite-elements to the analysis of diffraction gratings”, International Journal of Electronics, 40:3 (1976), 225–236 | DOI

[4] Bao G., Chen Zh., Wu H., “Adaptive finite-element method for diffraction gratings”, J. Opt. Soc. Am. A, 22:6 (2005), 1106–1114 | DOI | MR

[5] Moharam M. G., Gaylord T. K., “Rigorous coupled-wave analysis of planar-grating diffraction”, J. Opt. Soc. Am., 71:3 (1981), 811–818 | DOI

[6] Lee W., Degertekin F. L., “Rigorous coupled-wave analysis of multilayered grating structures”, IEEE J. Lightwave Tech., 22:10 (2004), 2359–2363 | DOI

[7] Chandezon J., Maystre D., Raoult G., “A new theoretical method for diffraction gratings and its numerical application”, J. Opt. (Paris), 1980, no. 11, 235–241 | DOI

[8] Li L., “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited”, J. Opt. Soc. Am. A, 11:11 (1994), 2816–2828 | DOI

[9] Sveshnikov A. G., “Nepolnyi metod Galerkina”, DAN SSSR, 236:5 (1977), 1076–1079 | MR | Zbl

[10] Born M., Volf E., Osnovy optiki, Nauka, M., 1973

[11] Moharam M. G., Pommet D. A., Grann E. B., Gaylord T. K., “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings”, J. Opt. Soc. Am. A, 12:5 (1995), 1068–1076 | DOI

[12] Moharam M. G., Pommet D. A., Grann E. B., Gaylord T. K., “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach”, J. Opt. Soc. Am. A, 12:5 (1995), 1077–1086 | DOI

[13] Ko D. Y. K., Sambles J. R., “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals”, J. Opt. Soc. Am. A, 5:11 (1988), 1863–1866 | DOI

[14] Li L., “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings”, J. Opt. Soc. Am. A, 13:5 (1996), 1024–1035 | DOI

[15] Sveshnikov A. G., “Printsip izlucheniya”, DAN SSSR, 3:5 (1950), 511–520

[16] Bogolyubov A. N., Petukhov A. A., Shapkina N. E., “Matematicheskoe modelirovanie volnovodov, soderzhaschikh lokalnye vstavki s fraktalnoi strukturoi”, Vestnik Moskovskogo universiteta, Seriya 3. Fizika. Astronomiya, 2 (2011), 20–23 | Zbl

[17] Li L., “Note on the S-matrix propagation algorithm”, J. Opt. Soc. Am. A, 20 (2003), 655–660 | DOI | MR

[18] Petukhov A. A., Trubetskov M. K., Bogolyubov A. N., “Avoiding diffraction order singularity in scattering matrix approach used for grating modeling”, Proceedings of PIERS 2012 (Moscow, 2012) (to appear)