Fast variant of K-method with universal adjustable scheme of scanning for problems of view of sight tomography on tokamaks
Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 15-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fast variant of K-method with universal adjustable Scheme of Scanning (SS) in View of Sights (VOS) computer tomography (inverse 3D Radon problem) for problems of plasma diagnostics on tokamaks is proposed. Universality of SS means the possibility of arbitrary disposition of detectors and collimators. Adjustability of SS means that any number of detectors can be switched off. This allows optimize SS on projection phase and also to save real date at the presence of defective detectors. Acceleration of algorithm is due to beforehand calculation of wavelet SLAE (System of Linear Algebraic Equations) inverse matrix (don’t mix with initial Radon SLAE) and using of waveletgaussians tables. Acceleration of algorithm is approximately 200 times that enables the possibility of calculations «in real time» ($\sim 3\mu\mathrm{s}$ / variant) on parallel architecture type of «CUDA».
Mots-clés : ADP (anisotropy of plasma diffusion), inverse, Fourier, tokamak
Keywords: (robustness, complexity, accuracy, stability) of algorithm, (direct, ill posed) problem (Radon), ideology of (Bayes, Simpson, Fisher, Quasi Wavelet Analysis), scanning scheme (fan, parallel, universal), few VOS tomography (VOS — Views of sight).
@article{MM_2013_25_6_a1,
     author = {A. V. Khovanskiy},
     title = {Fast variant of {K-method} with universal adjustable scheme of scanning for problems of view of sight tomography on tokamaks},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--31},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_6_a1/}
}
TY  - JOUR
AU  - A. V. Khovanskiy
TI  - Fast variant of K-method with universal adjustable scheme of scanning for problems of view of sight tomography on tokamaks
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 15
EP  - 31
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_6_a1/
LA  - ru
ID  - MM_2013_25_6_a1
ER  - 
%0 Journal Article
%A A. V. Khovanskiy
%T Fast variant of K-method with universal adjustable scheme of scanning for problems of view of sight tomography on tokamaks
%J Matematičeskoe modelirovanie
%D 2013
%P 15-31
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_6_a1/
%G ru
%F MM_2013_25_6_a1
A. V. Khovanskiy. Fast variant of K-method with universal adjustable scheme of scanning for problems of view of sight tomography on tokamaks. Matematičeskoe modelirovanie, Tome 25 (2013) no. 6, pp. 15-31. http://geodesic.mathdoc.fr/item/MM_2013_25_6_a1/

[1] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[3] Kramer G., Matematicheskie metody statistiki, Mir, M., 1976 | MR

[4] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[5] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[6] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[7] Kokhonen T., Assotsiativnaya pamyat, Mir, M., 1980 | MR

[8] Marpl S. L. (ml.), Tsifrovoi spektralnyi analiz i ego prilozheniya, Mir, M., 1990

[9] Troitskii I. N., Statisticheskaya teoriya tomografii, Radio i svyaz, M., 1989 | MR

[10] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[11] Craciunescu T., Bonheure G., Kiptily V., Murari A., Soare S., Tiseanu I., Zoita V., “The maximum likelihood reconstruction method for JET neutron tomography”, Nuclear Instruments and Methods in Physics Research A, 595 (2008), 623–630 | DOI

[12] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[13] Khovanskii A. V., Skopintsev D. A., Starodubtseva L. N., “Primenenie metoda podbora i K-metoda dlya resheniya zadach neitronnoi tomografii ITER”, XII Vserossiiskaya konferentsiya po diagnostike vysokotemperaturnoi plazmy. Tezisy doklada (g. Zvenigorod, Moskovskaya oblast, 2007), 182 | Zbl

[14] Kosarev E. L., “O chislennom reshenii integralnogo uravneniya Abelya”, ZhVM i MF, 13:6 (1973), 1591–1596 | MR | Zbl

[15] Korobochkin A. E., Marchenko N. A., Pergament A. Kh., “Postanovka zadach rekonstruktivnoi tomografii v fizike plazmy”, Diagnostika plazmy, 7, Energoatomizdat, M., 1990, 154–161

[16] Preobrazhenskii H. G., Pikalov V. V., Neustoichivye zadachi diagnostiki plazmy, Nauka, Novosibirsk, 1982

[17] Vigodner A. M., Pervozvanskii A. A., ZhVM i MF, 1991, no. 31, 1131–1145 | MR

[18] Kaporin I. E., “O predobuslovlivanii i rasparallelivanii metoda sopryazhennykh gradientov”: Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[19] Lebedev V. I., Funktsionalnyi analiz i vychislitelnaya matematika, Fizmatlit, M., 2005

[20] G. Nolet (red.), Seismicheskaya tomografiya, Mir, M., 1990

[21] Tarasko M. Z., preprint No 156 Fiziko-energeticheskogo instituta, 1969, 10 pp.

[22] Terebizh V. Yu., “Vosstanovlenie izobrazhenii pri minimalnoi apriornoi informatsii”, UFN, 165:2 (1995), 143–176 | DOI

[23] Shepp L. A., Vardi Y., IEEE Trans. on Medical Imaging MI, 1 (1982), 113–121 | DOI

[24] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[25] Dnestrovskii Yu. N., Lyadina E. S., Savrukhin P. V., “Prostranstvenno-vremennaya tomograficheskaya zadacha diagnostiki plazmy”, Fizika plazmy, 18:2 (1992), 201–204

[26] Bessenrodt-Weberpals M., Fuchs J. C., Sokoll M., Soft X-Ray Diagnostics for ASDEX Upgrade, Munchen ASDEX Upgrade Team, Max-Plank-Institut fur Plasmaphysik Garching, 1995

[27] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, «LIBROKOM», M., 2010, 336 pp.

[28] Terebizh V. Yu., Vvedenie v statisticheskuyu teoriyu obratnykh zadach, Fizmatlit, M., 2005

[29] Petrov A. P., “Otsenki lineinykh funktsionalov dlya resheniya nekotorykh obratnykh zadach”, ZhVM i MF, 7:3 (1967), 648–654

[30] Khovanskii A. V., “Regulyarizovannyi metod Grevillya i ego primeneniya v transmissionnoi kompyuternoi tomografii”, Matematicheskoe modelirovanie, 8:11 (1996), 109–118 | MR

[31] Brammer K., Ziffling G., Filtr Kalmana–Byusi, Nauka, M., 1982

[32] Abaffi I., Spedikato E., Matematicheskie metody dlya lineinykh i nelineinykh uravnenii. Proektsionnye ABS-algoritmy, Mir, M., 1996 | MR

[33] Strakhov S. M., Kriticheskii analiz klassicheskoi teorii lineinykh nekorrektnykh zadach, RAN, M., 1999

[34] Petrov A. P., Khovanskii A. V., “Otsenka snizu pogreshnosti, voznikayuschei pri reshenii operatornykh uravnenii I roda na kompaktakh”, ZhVM i MF, 9:2 (1969), 194–201 | MR | Zbl

[35] Petrov A. P., Khovanskii A. V., “Otsenka pogreshnosti lineinykh zadach pri nalichii oshibok v operatorakh i pravykh chastyakh uravnenii”, ZhVM i MF, 14:2 (1974), 292–298 | MR | Zbl

[36] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963, 734 pp. | MR

[37] Khovanskii A. V., “Razvitie metoda blochno-tsiklicheskogo obrascheniya v kompyuternoi tomografii”, Mat. modelirovanie, 24:5 (2012), 65–80 | MR

[38] V. V. Pikalov, T. S. Melnikova, Nizkotemperaturnaya plazma, v. 13, Tomografiya plazmy, Nauka, Novosibirsk, 1995, 229 pp.

[39] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Fizmatlit. Nauka, M., 1993

[40] Kadomtsev B. B., Kollektivnye yavleniya v plazme, Nauka, M., 1988 | MR | Zbl

[41] Khovanskii A. V., Skopintsev D. A., Starodubtseva L. N., Shevchenko V. F., “Realizatsiya metoda Gottardi dlya resheniya obratnykh zadach TSP”, Tezisy doklada na V Vsesoyuznom soveschanii po diagnostike vysokotemperaturnoi plazmy (Minsk, 1990)

[42] Granetz R. S., Smeulders P., “X-ray tomography on JET”, Nuclear Fusion, 28:3 (1988(9)), 457–476 | DOI

[43] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[44] Marcus F. B., Adams J. M., Balet B. et al., Nuclear Fusion, 33:9 (1993) | DOI

[45] Khovanskii A. V., Vakhanelova N. M., Shulzhenko A. V., Metod resheniya obratnoi zadachi Radona, osnovannyi na sinteze metodov Grevillya i Kormaka, preprint TRINITI 0106-A, TsNIIATOMINFORM, Troitsk, 2003, 4 pp.

[46] Khovanskii A. V., Vakhanelova N. M., Demkin A. M., Reshenie sistem lineinykh algebraicheskikh uravnenii s garantiei neotritsatelnosti resheniya na osnove simpleks-metoda Dantsiga, preprint TRINITI 0072-A, TsNIIATOMINFORM, Troitsk, 2000, 6 pp. | MR

[47] Turchin V. F., Kozlov V. P., Malkevich M. S., “Ispolzovanie metodov matematicheskoi statistiki dlya resheniya nekorrektnykh zadach”, UFN, 102:3 (1970), 345–386 | DOI

[48] Chui Ch., Vvedenie v veivlety, Mir, M., 2001

[49] Khovanskii A. V., Vakhanelova N. M., Demkin A. M., Starodubtseva L. N., Charikov M. A., Shulzhenko A. V., “Metody ultramalorakursnoi tomografii v diagnostike plazmy”, Matematicheskoe modelirovanie, 16:2 (2004), 111–117

[50] Ingesson L. G. et al., “Soft X-Ray Tomography during ELMs and Impurity Injection in JET”, Nuclear Fusion, 38:11 (1998), 1675–1694 | DOI

[51] Demeter G., “Tomography using neural networks”, Rev. Sci. Instrum., 68:3, March (1997) | DOI

[52] Kalvin S., Optimization of the ITER bolometer lines of sight and performance analysis, KFKI Research Institute for Particle and Nuclear Physics, Association EURATOM HAS, Budapest, Hungary, 15 September 2006

[53] Khovanskii A. V., Kuzmina S. A., Skopintsev D. A., “Primenenie metoda podbora resheniya dlya resheniya obratnoi zadachi Radona v neitronnoi tomografii ITER”, PTE, 2006, no. 2, 63–70 | MR