Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_5_a7, author = {G. N. Kuvyrkin and I. Y. Savelyeva}, title = {Numerical solution of an integrodifferential equation of heat conduction for~nonlocal medium}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {99--108}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/} }
TY - JOUR AU - G. N. Kuvyrkin AU - I. Y. Savelyeva TI - Numerical solution of an integrodifferential equation of heat conduction for~nonlocal medium JO - Matematičeskoe modelirovanie PY - 2013 SP - 99 EP - 108 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/ LA - ru ID - MM_2013_25_5_a7 ER -
%0 Journal Article %A G. N. Kuvyrkin %A I. Y. Savelyeva %T Numerical solution of an integrodifferential equation of heat conduction for~nonlocal medium %J Matematičeskoe modelirovanie %D 2013 %P 99-108 %V 25 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/ %G ru %F MM_2013_25_5_a7
G. N. Kuvyrkin; I. Y. Savelyeva. Numerical solution of an integrodifferential equation of heat conduction for~nonlocal medium. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 99-108. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/
[1] Gusev A. I., Nanomaterialy, nanostruktury, nanotekhnologii, Fizmatlit, M., 2005, 410 pp.
[2] Andrievskii R. A., Ragulya A. V., Nanostrukturnye materialy, Izd. tsentr “Akademiya”, M., 2005, 192 pp.
[3] Kobayasi N., Vvedenie v nanotekhnologiyu, Per. s yaponsk., BINOM. Laboratoriya znanii, M., 2005, 134 pp.
[4] Pul-ml. Ch., Ouenc F., Nanotekhnologii, Tekhnosfera, M., 2006, 336 pp.
[5] Mileiko S. T., “Kompozity i nanostruktury”, Kompozity i nanostruktury, 2009, no. 1, 6–37 | MR
[6] Kuvyrkin G. N., Termomekhanika deformiruemogo tverdogo tela pri vysokointensivnom nagruzhenii, Izd. MGTU, M., 1993, 142 pp.
[7] Zarubin B. C., Kuvyrkin G. N., “Matematicheskaya model relaksiruyuschego tverdogo tela pri nestatsionarnom nagruzhenii”, Dokl. RAN, 345:2 (1995), 193–195 | Zbl
[8] Zarubin B. C., Kuvyrkin G. N., “Matematicheskoe modelirovanie termomekhanicheskikh protsessov pri intensivnom teplovom vozdeistvii”, Teplofizika vysokikh temperatur, 41:2 (2003), 300–309
[9] Zarubin B. C., Kuvyrkin G. N., Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoi sredy, Izd. MGTU im. N. E. Baumana, M., 2008, 512 pp.
[10] Onami M. i dr., Vvedenie v mikromekhaniku, Per. s yaponsk., Metallurgiya, M., 1987, 280 pp.
[11] Krivtsov A. M., Deformirovanie i razrushenie tverdykh tel s mikrostrukturoi, Fizmatlit, M., 2007, 304 pp.
[12] Eringen A. Cemal, Nonlocal continuum field theories, Springer-Verlag, New York, 2002, 376 pp. | MR
[13] Zarubin V. S., Kuvyrkin G. N., Saveleva I. Yu., “Nelokalnaya matematicheskaya model teploprovodnosti v tverdykh telakh”, Vestnik MGTU im. N. E. Baumana, ser. Estestv. Nauki, 2011, no. 3, 20–30
[14] Troschiev V. E., Shagaliev R. M., “Konservativnye uzlovye skhemy metodov konechnykh raznostei i konechnykh elementov dlya dvumernogo uravneniya teploprovodnosti”, Chislennye metody mekhaniki sploshnoi sredy, 15:4 (1984), 131–157
[15] Akin J. E., Application and implementation of finite element method, Acad. Press, London, 1982, 372 pp. | MR | Zbl