Numerical solution of an integrodifferential equation of heat conduction for nonlocal medium
Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 99-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mathematical model of heat conduction in nonlocal medium with internal friction is proposed on the basis of the relations of rational thermodynamics of irreversible processes. One-dimensional numerical solution of an integrodifferential equation of heat conduction was obtained by the finite elements method.
Keywords: nonlocal medium, internal state parameters, integrodifferential equation of heat conduction, finite elements method.
@article{MM_2013_25_5_a7,
     author = {G. N. Kuvyrkin and I. Y. Savelyeva},
     title = {Numerical solution of an integrodifferential equation of heat conduction for~nonlocal medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--108},
     year = {2013},
     volume = {25},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/}
}
TY  - JOUR
AU  - G. N. Kuvyrkin
AU  - I. Y. Savelyeva
TI  - Numerical solution of an integrodifferential equation of heat conduction for nonlocal medium
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 99
EP  - 108
VL  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/
LA  - ru
ID  - MM_2013_25_5_a7
ER  - 
%0 Journal Article
%A G. N. Kuvyrkin
%A I. Y. Savelyeva
%T Numerical solution of an integrodifferential equation of heat conduction for nonlocal medium
%J Matematičeskoe modelirovanie
%D 2013
%P 99-108
%V 25
%N 5
%U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/
%G ru
%F MM_2013_25_5_a7
G. N. Kuvyrkin; I. Y. Savelyeva. Numerical solution of an integrodifferential equation of heat conduction for nonlocal medium. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 99-108. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a7/

[1] Gusev A. I., Nanomaterialy, nanostruktury, nanotekhnologii, Fizmatlit, M., 2005, 410 pp.

[2] Andrievskii R. A., Ragulya A. V., Nanostrukturnye materialy, Izd. tsentr “Akademiya”, M., 2005, 192 pp.

[3] Kobayasi N., Vvedenie v nanotekhnologiyu, Per. s yaponsk., BINOM. Laboratoriya znanii, M., 2005, 134 pp.

[4] Pul-ml. Ch., Ouenc F., Nanotekhnologii, Tekhnosfera, M., 2006, 336 pp.

[5] Mileiko S. T., “Kompozity i nanostruktury”, Kompozity i nanostruktury, 2009, no. 1, 6–37 | MR

[6] Kuvyrkin G. N., Termomekhanika deformiruemogo tverdogo tela pri vysokointensivnom nagruzhenii, Izd. MGTU, M., 1993, 142 pp.

[7] Zarubin B. C., Kuvyrkin G. N., “Matematicheskaya model relaksiruyuschego tverdogo tela pri nestatsionarnom nagruzhenii”, Dokl. RAN, 345:2 (1995), 193–195 | Zbl

[8] Zarubin B. C., Kuvyrkin G. N., “Matematicheskoe modelirovanie termomekhanicheskikh protsessov pri intensivnom teplovom vozdeistvii”, Teplofizika vysokikh temperatur, 41:2 (2003), 300–309

[9] Zarubin B. C., Kuvyrkin G. N., Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoi sredy, Izd. MGTU im. N. E. Baumana, M., 2008, 512 pp.

[10] Onami M. i dr., Vvedenie v mikromekhaniku, Per. s yaponsk., Metallurgiya, M., 1987, 280 pp.

[11] Krivtsov A. M., Deformirovanie i razrushenie tverdykh tel s mikrostrukturoi, Fizmatlit, M., 2007, 304 pp.

[12] Eringen A. Cemal, Nonlocal continuum field theories, Springer-Verlag, New York, 2002, 376 pp. | MR

[13] Zarubin V. S., Kuvyrkin G. N., Saveleva I. Yu., “Nelokalnaya matematicheskaya model teploprovodnosti v tverdykh telakh”, Vestnik MGTU im. N. E. Baumana, ser. Estestv. Nauki, 2011, no. 3, 20–30

[14] Troschiev V. E., Shagaliev R. M., “Konservativnye uzlovye skhemy metodov konechnykh raznostei i konechnykh elementov dlya dvumernogo uravneniya teploprovodnosti”, Chislennye metody mekhaniki sploshnoi sredy, 15:4 (1984), 131–157

[15] Akin J. E., Application and implementation of finite element method, Acad. Press, London, 1982, 372 pp. | MR | Zbl