Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2013_25_5_a5, author = {R. Golovanov and N. N. Kalitkin and K. I. Lutskiy}, title = {Odd extension for the {Fourier} approximation of nonperiodic functions}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {67--84}, publisher = {mathdoc}, volume = {25}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a5/} }
TY - JOUR AU - R. Golovanov AU - N. N. Kalitkin AU - K. I. Lutskiy TI - Odd extension for the Fourier approximation of nonperiodic functions JO - Matematičeskoe modelirovanie PY - 2013 SP - 67 EP - 84 VL - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a5/ LA - ru ID - MM_2013_25_5_a5 ER -
R. Golovanov; N. N. Kalitkin; K. I. Lutskiy. Odd extension for the Fourier approximation of nonperiodic functions. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 67-84. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a5/
[1] Akhmed N., Rao K., Ortogonalnye preobrazovaniya pri obrabotke tsifrovykh signalov, Per. s angl., Svyaz, M., 1980
[2] Kalitkin N. N., Kuzmina L. V., “Approksimatsiya i ekstrapolyatsiya tabulirovannykh funktsii”, DAN, 374:4 (2000), 464–468 | MR
[3] Kalitkin N. N., Lutskii K. I., “Optimalnye parametry metoda dvoinogo perioda”, Matematicheskoe modelirovanie, 19:1 (2007), 57–68 | Zbl
[4] Krylov A. N., O priblizhennykh vychisleniyakh, Lektsii, chitannye v 1906 g., Litogr. K. Birkenfelda, Spb., 1907, 288 pp.
[5] Maliev A. S., “O razlozhenii v ryady Fure povyshennoi skhodimosti funktsii, opredelennykh v dannom promezhutke”, Izvestiya Akademii nauk SSSR. VII seriya. Otdelenie matematicheskikh i estestvennykh nauk, 1933, no. 8, 1113–1120
[6] Nersesyan A. B., “Kvazipolinomy tipa Bernulli i uskorenie skhodimosti ryadov Fure kusochno-gladkikh funktsii”, Vychislitelnaya matematika, 2004, no. 4 | MR
[7] Eckhoff K. S., “Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions”, The Mathematics of Computation, 64:210 (1995), 671–690 | DOI | MR | Zbl
[8] Gottlieb D., Anne G., The Resolution of the Gibbs Phenomenon for “Spliced” Functions in One or Two Dimensions, Center for Research on Parallel Computation, 1997 | MR
[9] Adcock B., Modified Fourier expansions: theory, construction and application, Trinity Hall University of Cambridge, 2010
[10] Kalitkin N. N., Kuzmina L. V., Yukhno L. F., “Kolichestvennyi kriterii obuslovlennosti sistem lineinykh algebraicheskikh uravnenii”, Matematicheskoe modelirovanie, 7:4 (1995), 99–127 | MR
[11] Kalitkin N. N., Lutskii K. I., “Metod nechëtnogo prodolzheniya dlya fure-approksimatsii neperiodicheskikh funktsii”, DAN, 441:1 (2011), 19–23 | MR | Zbl