Odd extension for the Fourier approximation of nonperiodic functions
Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 67-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximation of functions by Fourier series plays an important role in applied digital signal processing. Proposed the method to odd continuation for nonperiodic function, which increases smoothness in comparison with existing methods. It is shown that the method leads to a substantial improvement of convergence of Fourier series for this function. The method extended to the function of two variables. For two-dimensional Fourier–approximation has been found the best way to truncating of the matrix of coefficients. The advantage of the new method is illustrated on test calculations.
Mots-clés : Fourier–approximation
Keywords: periodic extension, high precision.
@article{MM_2013_25_5_a5,
     author = {R. Golovanov and N. N. Kalitkin and K. I. Lutskiy},
     title = {Odd extension for the {Fourier} approximation of nonperiodic functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_5_a5/}
}
TY  - JOUR
AU  - R. Golovanov
AU  - N. N. Kalitkin
AU  - K. I. Lutskiy
TI  - Odd extension for the Fourier approximation of nonperiodic functions
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 67
EP  - 84
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_5_a5/
LA  - ru
ID  - MM_2013_25_5_a5
ER  - 
%0 Journal Article
%A R. Golovanov
%A N. N. Kalitkin
%A K. I. Lutskiy
%T Odd extension for the Fourier approximation of nonperiodic functions
%J Matematičeskoe modelirovanie
%D 2013
%P 67-84
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_5_a5/
%G ru
%F MM_2013_25_5_a5
R. Golovanov; N. N. Kalitkin; K. I. Lutskiy. Odd extension for the Fourier approximation of nonperiodic functions. Matematičeskoe modelirovanie, Tome 25 (2013) no. 5, pp. 67-84. http://geodesic.mathdoc.fr/item/MM_2013_25_5_a5/

[1] Akhmed N., Rao K., Ortogonalnye preobrazovaniya pri obrabotke tsifrovykh signalov, Per. s angl., Svyaz, M., 1980

[2] Kalitkin N. N., Kuzmina L. V., “Approksimatsiya i ekstrapolyatsiya tabulirovannykh funktsii”, DAN, 374:4 (2000), 464–468 | MR

[3] Kalitkin N. N., Lutskii K. I., “Optimalnye parametry metoda dvoinogo perioda”, Matematicheskoe modelirovanie, 19:1 (2007), 57–68 | Zbl

[4] Krylov A. N., O priblizhennykh vychisleniyakh, Lektsii, chitannye v 1906 g., Litogr. K. Birkenfelda, Spb., 1907, 288 pp.

[5] Maliev A. S., “O razlozhenii v ryady Fure povyshennoi skhodimosti funktsii, opredelennykh v dannom promezhutke”, Izvestiya Akademii nauk SSSR. VII seriya. Otdelenie matematicheskikh i estestvennykh nauk, 1933, no. 8, 1113–1120

[6] Nersesyan A. B., “Kvazipolinomy tipa Bernulli i uskorenie skhodimosti ryadov Fure kusochno-gladkikh funktsii”, Vychislitelnaya matematika, 2004, no. 4 | MR

[7] Eckhoff K. S., “Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions”, The Mathematics of Computation, 64:210 (1995), 671–690 | DOI | MR | Zbl

[8] Gottlieb D., Anne G., The Resolution of the Gibbs Phenomenon for “Spliced” Functions in One or Two Dimensions, Center for Research on Parallel Computation, 1997 | MR

[9] Adcock B., Modified Fourier expansions: theory, construction and application, Trinity Hall University of Cambridge, 2010

[10] Kalitkin N. N., Kuzmina L. V., Yukhno L. F., “Kolichestvennyi kriterii obuslovlennosti sistem lineinykh algebraicheskikh uravnenii”, Matematicheskoe modelirovanie, 7:4 (1995), 99–127 | MR

[11] Kalitkin N. N., Lutskii K. I., “Metod nechëtnogo prodolzheniya dlya fure-approksimatsii neperiodicheskikh funktsii”, DAN, 441:1 (2011), 19–23 | MR | Zbl