Modeling of gaseous discharge’s electron stage
Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 105-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of electron cascade transport is represented. It is developed for gaseous discharge’s pre-breakdown stage investigation оn the base of kinetic equation for electrons in self-consistent electromagnetic field. Elastic scattering of electrons, excitation by the electron impact and impact ionization of molecule are taken into account. The natural ionization background is considered as initial free electrons distribution. The results of computing experiment are compared with drift velocity, average energy and Townsend coefficient in charged plane capacitor measured data. The comparison shows that model does not contradict experiment. The transport approximation is formulated for acceleration of discharge full current calculations. It is based on the elastic collisions’ averaging. The applicability of transport approximation for full current of capillary discharge is investigated.
Keywords: electromagnetic field, distribution function, kinetic equation, particles’ method, generalized function.
@article{MM_2013_25_3_a8,
     author = {A. V. Berezin and A. S. Vorontsov and S. V. Zakharov and M. B. Markov and S. V. Parot'kin},
     title = {Modeling of gaseous discharge{\textquoteright}s electron stage},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--118},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_3_a8/}
}
TY  - JOUR
AU  - A. V. Berezin
AU  - A. S. Vorontsov
AU  - S. V. Zakharov
AU  - M. B. Markov
AU  - S. V. Parot'kin
TI  - Modeling of gaseous discharge’s electron stage
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 105
EP  - 118
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_3_a8/
LA  - ru
ID  - MM_2013_25_3_a8
ER  - 
%0 Journal Article
%A A. V. Berezin
%A A. S. Vorontsov
%A S. V. Zakharov
%A M. B. Markov
%A S. V. Parot'kin
%T Modeling of gaseous discharge’s electron stage
%J Matematičeskoe modelirovanie
%D 2013
%P 105-118
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_3_a8/
%G ru
%F MM_2013_25_3_a8
A. V. Berezin; A. S. Vorontsov; S. V. Zakharov; M. B. Markov; S. V. Parot'kin. Modeling of gaseous discharge’s electron stage. Matematičeskoe modelirovanie, Tome 25 (2013) no. 3, pp. 105-118. http://geodesic.mathdoc.fr/item/MM_2013_25_3_a8/

[1] Bazelyan E. M., Raizer Yu. P., Fizika molnii i molniezaschity, Fizmatlit, M., 2001

[2] Zakharov S. V., Zakharov V. S., Novikov V. G., Mond M., Choi P., “Plasma dynamics in a hollow cathode triggered discharge with the influence of fast electrons on ionization phenomena and EUV emission”, Plasma Sources Sci. Technol., 17 (2008), 024017, 13 pp. | DOI

[3] Raizer Yu. P., Fizika gazovogo razryada, Nauka, M., 1992

[4] Messi G., Barkhop E., Elektronnye i ionnye stolknoveniya, Mir, M., 1958

[5] Kolchuzhkin A. M., Uchaikin V. V., Vvedenie v teoriyu prokhozhdeniya chastits cherez veschestvo, Atomizdat, M., 1978 | MR

[6] Markov M. B., Parotkin S. V., Sysenko A. V., “Metod chastits dlya modeli elektromagnitnogo polya potoka elektronov v gaze”, Matematicheskoe modelirovanie, 20:5 (2008), 35–54 | MR | Zbl

[7] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Dobrosvet, M., 2000

[8] Markov M. B., “Priblizhenie odnorodnogo rasseyaniya elektronov na traektoriyakh”, Matematicheskoe modelirovanie, 21:10 (2009), 85–93 | MR | Zbl

[9] Markov M. B., Zhukovskiy M. E., “Modeling the radiative electromagnetic field”, International Journal of Computing Science and Mathematics, 2:1/2 (2008), 110–131 | DOI | MR | Zbl

[10] Andrianov A. N., Berezin A. V., Vorontsov A. S., Efimkin K. N., Markov M. B., “Modelirovanie elektromagnitnykh polei radiatsionnogo proiskhozhdeniya na mnogoprotsessornykh vychislitelnykh sistemakh”, Matematicheskoe modelirovanie, 20:3 (2008), 98–114 | MR | Zbl

[11] Loev M., Teoriya veroyatnostei, IL, M., 1962 | MR

[12] Berezin A. V., Vorontsov A. S., Markov M. B., Plyuschenkov B. D., “O vyvode i reshenii uravnenii Maksvella v zadachakh s vydelennym volnovym frontom”, Matematicheskoe modelirovanie, 18:4 (2006), 43–60 | MR | Zbl

[13] Weyhreter M. et al., “Measurements of differential cross sections for $\mathrm{e}$-$\mathrm{Ar}$, $\mathrm{Kr}$, $\mathrm{Xe}$ scattering at $\mathrm{E}=0.05-2\mathrm{eV}$”, Z. Phys. D, 1988, no. 7, 333 | DOI

[14] Yuan J. et al., “Quasirelativistic low-energy electron-atom scattering: $\mathrm{Xe}$”, J. Phys. B, 24 (1991), 275 | DOI

[15] Gibson C. et al., “Low-energy electron scattering from xenon”, J. Phys. B, 31 (1998), 3949 | DOI

[16] Register D. F. et al., “Elastic electron scattering cross sections”, J. Phys. B, 19 (1986), 1685 | DOI

[17] Linert I. et al., “Dfferential cross sections for elastic electron scattering in xenon in the energy range from 5 eV to 10 eV”, Phys. Rev. A, 76 (2007), 03271 | DOI

[18] Eachran R. P. et al., “Elastic scattering of electrons from krypton and xenon”, J. Phys. B, 17 (1984), 2507 | DOI

[19] Nishimura H. et al., “Elastic scattering of electrons from xenon”, J. Phys. Soc. Jap., 56:1 (1987), 70 | DOI

[20] Salvat F., “Optical-model potential for electron and positron elastic scattering by atoms”, Phys. Rev. A, 68 (2003), 012708 | DOI

[21] Ofitsialnyi sait National Institute of Standarts and Technology http://www.phys.nist.gov/

[22] Itikawa Y. (ed.), Numerical data and functional relationships in science and technology. Group I. Elementary particles, nuclei and atoms, v. 17, Photon and electron interactions with atoms, molecules and ions. Subvolum A. Interaction of photon and electron with atoms, Springer, Berlin, 2000

[23] Kim Y.-K., Rudd M. E., “Binary-encounter-dipole model for electron-impact ionization”, Phys. Rev. A, 50 (1994), 3954–3967 | DOI

[24] Kim Y., “Extension of the binary-encounter-dipol model to relativistic incident electrons”, Phys. Rev. A, 62 (2000), 052710 | DOI

[25] Rapp D., Briglia D. D., “Ionization by electron impact, II”, J. Chem. Phys., 43:5 (1965), 1480 | DOI

[26] Rejoub R. et al., “Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases”, Phys. Rev. A, 65 (2002), 042713 | DOI

[27] Bowe J. C., “Drift velocity of electron in Nitrogen, Neon, Argon, Krypton and Xenon”, Phys. Rev., 117 (1960), 1411 | DOI

[28] Wagner K. H., Z. Phys., 178 (1964), 64 | DOI

[29] Makabe T. et al., J. Phys. B, 11 (1978), 3785 | DOI

[30] Hayashi M., “Calculation of swarm parameters in xenon at high E/N by a Monte Carlo simulation method”, J. Phys. D, 16 (1983), 591 | DOI

[31] Kruithof A. A., Physica, 7 (1940), 519 | DOI