Calculating of logical functions probabilities in logical-probabilistic modelling of complex systems
Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 125-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider possible ways to calculate probabilities of complex logical functions in logical-probabilistic modelling of poorly formalized complex systems and processes. When solving this problem basing on Zhegalkin' polynomials for given accuracy of calculations, we prove the possibility to essentially reduce the number of operations due to cutting the members with weak contagion. However, it is necessary to provide independence of logical summands in the source logical function. We show that there no such necessity if we use methods of n-tuple algebra (NTA) to calculate the probabilities. Computational complexity to calculate the probabilities precisely by our method is less than the one of the first mentioned method. Besides, both methods provide solving the inverse problem, namely the calculating of the probability for one of parameters when probabilities of the function and other parameters are given, but here it is necessary to check satisfiability for a number of delimitations.
Keywords: logical-probabilistic modelling, calculate probabilities of logical functions, Zhegalkin' polynomials, inverse problem of probabilities calculate.
@article{MM_2013_25_2_a9,
     author = {A. E. Gorodetskii and B. A. Kulik},
     title = {Calculating of logical functions probabilities in logical-probabilistic modelling of complex systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_2_a9/}
}
TY  - JOUR
AU  - A. E. Gorodetskii
AU  - B. A. Kulik
TI  - Calculating of logical functions probabilities in logical-probabilistic modelling of complex systems
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 125
EP  - 136
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_2_a9/
LA  - ru
ID  - MM_2013_25_2_a9
ER  - 
%0 Journal Article
%A A. E. Gorodetskii
%A B. A. Kulik
%T Calculating of logical functions probabilities in logical-probabilistic modelling of complex systems
%J Matematičeskoe modelirovanie
%D 2013
%P 125-136
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_2_a9/
%G ru
%F MM_2013_25_2_a9
A. E. Gorodetskii; B. A. Kulik. Calculating of logical functions probabilities in logical-probabilistic modelling of complex systems. Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 125-136. http://geodesic.mathdoc.fr/item/MM_2013_25_2_a9/

[1] Zadeh L. A., “Fuzzy sets”, Inform. Contr., 8 (1965), 338–353 | DOI | MR | Zbl

[2] Gorodetskii A. E., Osnovy teorii intellektualnykh sistem upravleniya, LAMBERT Academic Publishing, 2011, 314 pp.

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1964, 500 pp. ; v. 2, 1967, 752 pp. | Zbl | Zbl

[4] Alefeld G., Khertsberger Yu., Vvedenie v intervalnye vychisleniya, Mir, M., 1987, 360 pp. | MR

[5] Zade L., Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii, Mir, M., 1976, 168 pp. | MR

[6] Ventsel E. S., Teoriya veroyatnostei, Nauka, M., 1969, 576 pp. | MR

[7] Zhegalkin I. I., “Arifmetizatsiya simvolicheskoi logiki”, Matemat. sb., 36:3–4 (1929), 205–338

[8] Gorodetskii A. E., Dubarenko V. V., “Kombinatornyi metod vychisleniya veroyatnosti slozhnykh logicheskikh funktsii”, ZhVM i MF, 39:7 (1999), 1246–1249

[9] Gorodetskii A. E., Dubarenko V. V., Erofeev A. A., “Algebraicheskii podkhod k resheniyu zadach logicheskogo upravleniya”, AiT, 2000, no. 2, 127–138 | MR | Zbl

[10] Ryabinin I. A., Nadezhnost i bezopasnost strukturno-slozhnykh sistem, Politekhnika, SPb., 2000, 248 pp.

[11] Kulik B. A., Zuenko A. A., Fridman A. Ya., Algebraicheskii podkhod k intellektualnoi obrabotke dannykh i znanii, Izd-vo Politekhn. un-ta, SPb., 2010, 235 pp.

[12] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974, 120 pp. | MR