Model analysis of the stresses in the interior of an ice slab upon the body moving in electrically charged supercooled clouds
Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 86-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A physicomathematical model is suggested for estimation of the electrostriction stresses in the ice layer arising on the body (cylinder) surface due to solidification of supercooled electrically charged droplets. Those move against the background of the incompressible air flow around the cylinder which circulation simulates the lift for airfoil of infinite aspect ratio. Atmosphere temperature is supposed to be low enough for providing immediate freezing-down of the continuously impinging droplets to the ice slab. Published experimental data on the ions mobility in ice are used for assessment of the ice specific electrical conductivity. It is shown that the ohmic heating may be neglected while the latent heat release (because of crystallization) may exercise a significant influence on electrical conductivity due to its sharply nonlinear temperature dependence. A model of an ideal dielectric (of infinitely large electrical resistance) is discussed as a limit case.
Keywords: icing, supercooled electrically charged droplets, electrostriction tensions.
@article{MM_2013_25_2_a6,
     author = {A. V. Kashevarov and A. L. Stasenko},
     title = {Model analysis of the stresses in the interior of an ice slab upon the body moving in electrically charged supercooled clouds},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {86--96},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_2_a6/}
}
TY  - JOUR
AU  - A. V. Kashevarov
AU  - A. L. Stasenko
TI  - Model analysis of the stresses in the interior of an ice slab upon the body moving in electrically charged supercooled clouds
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 86
EP  - 96
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_2_a6/
LA  - ru
ID  - MM_2013_25_2_a6
ER  - 
%0 Journal Article
%A A. V. Kashevarov
%A A. L. Stasenko
%T Model analysis of the stresses in the interior of an ice slab upon the body moving in electrically charged supercooled clouds
%J Matematičeskoe modelirovanie
%D 2013
%P 86-96
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_2_a6/
%G ru
%F MM_2013_25_2_a6
A. V. Kashevarov; A. L. Stasenko. Model analysis of the stresses in the interior of an ice slab upon the body moving in electrically charged supercooled clouds. Matematičeskoe modelirovanie, Tome 25 (2013) no. 2, pp. 86-96. http://geodesic.mathdoc.fr/item/MM_2013_25_2_a6/

[1] Kashevarov A. V., Stasenko A. L., “Vynuzhdennaya kristallizatsiya kapel pered telom, dvizhuschimsya v pereokhlazhdennom oblake”, Matematicheskoe modelirov., 22:2 (2010), 139–147 | Zbl

[2] Kashevarov A. V., Stasenko A. L., “Modelirovanie polei temperatury i napryazhenii v sloe lda na tsilindre v pereokhlazhdennom gazokapelnom potoke”, Matematicheskoe modelirovanie, 22:10 (2010), 119–126 | Zbl

[3] Matveev L. T., Dinamika oblakov, Gidrometeoizdat, L., 1981, 312 pp.

[4] Khrgian A. Kh., Fizika atmosfery, Fizmatlit, M., 1958, 476 pp.

[5] Kim O. V., Dunn P. F., “Real-time direct charge measurements of microdroplets and comparison with indirect methods”, Aerosol Sci. and Technology, 44:4 (2010), 292–301 | DOI

[6] Eigen M., De Maeyer L., “Self-dissociation and protonic charge transport in water and ice”, Proc. Roy. Soc., Ser. A, 247:1251 (1958), 505–533 | DOI

[7] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1976, 616 pp.

[8] Zheng W., Jewitt D., Kaiser R. I., “Temperature dependence of the formation of hydrogen, oxygen and hydrogen peroxide in electron-irradiated crystalline water ice”, Astrophys. J., 248 (2006), 753–761 | DOI

[9] Reich A., Goodrich B. F., Scavuzzo R., Chu M., Survey of mechanical properties of impact ice, AIAA Paper 94-0712, 1994, 7 pp.