Mathematical model of spread of HIV-infection in population with dynamic risk of infection
Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 45-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the research is development of methods of effectiveness assessment for the HIV-infection control in Russia. Existing approaches to modeling the spread of HIV were based on the assumption that individual risk of infection is constant. In this paper we propose a model of the virus spread in a population with a dynamic risk. The dynamics of risk described by models of formation of alcohol and drug abuse — the main factors of HIV spread in Russia. The paper discusses the main findings include: statistical data analysis, model the dynamics of HIV risk and the problem of identifying model parameters according to the regions of Russia.
Keywords: mathematical model, HIV epidemiology, dynamic risk.
@article{MM_2013_25_1_a3,
     author = {E. A. Nosova and A. A. Romanyukha},
     title = {Mathematical model of spread of {HIV-infection} in population with dynamic risk of infection},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--64},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2013_25_1_a3/}
}
TY  - JOUR
AU  - E. A. Nosova
AU  - A. A. Romanyukha
TI  - Mathematical model of spread of HIV-infection in population with dynamic risk of infection
JO  - Matematičeskoe modelirovanie
PY  - 2013
SP  - 45
EP  - 64
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2013_25_1_a3/
LA  - ru
ID  - MM_2013_25_1_a3
ER  - 
%0 Journal Article
%A E. A. Nosova
%A A. A. Romanyukha
%T Mathematical model of spread of HIV-infection in population with dynamic risk of infection
%J Matematičeskoe modelirovanie
%D 2013
%P 45-64
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2013_25_1_a3/
%G ru
%F MM_2013_25_1_a3
E. A. Nosova; A. A. Romanyukha. Mathematical model of spread of HIV-infection in population with dynamic risk of infection. Matematičeskoe modelirovanie, Tome 25 (2013) no. 1, pp. 45-64. http://geodesic.mathdoc.fr/item/MM_2013_25_1_a3/

[1] Nosova E. A., Romanyukha A. A., “Regional index of HIV infection Risk based on factors of social disadaptation”, RJNAMM, 2009, 325–340 | MR | Zbl

[2] Nosova E. A., Obukhova O. V., Romanyukha A. A., “Rasprostranenie VICh i sotsialnaya dezadaptatsiya naseleniya Rossii”, Russkii zhurnal «SPID, rak i obschestvennoe zdorove», 14:2(24) (2010), 13–32

[3] Alistar S., Owens D., Brandeau M., “Effectiveness and cost-effectiveness of expanding drug treatment programs and HIV antiretroviral therapy in a mixed HIV epidemic: an analysis for Ukraine”, Russkii zhurnal «SPID, rak i obschestvennoe zdorove», 14:1(23) (2010), 44

[4] Kupryashkina-MakGill S. V., “Vliyanie grantov globalnogo fonda na politiku v oblasti VICh/SPIDa v Ukraine”, Russkii zhurnal «SPID, rak i obschestvennoe zdorove», 14:2(24) (2010), 7–12

[5] Cooke K. L., Yorke J. A., “Some equations modelling growth processes and gonorrhea epidemics”, Math. Biosci., 1973, no. 16, 75–101 | DOI | MR | Zbl

[6] Malyi V. P., VICh. SPID. Noveishii meditsinskii spravochnik, Eksmo, M., 2009, 672 pp.

[7] Pokrovskii V. V., Ladnaya N. N., Sokolova E. V., Buravtsova E. V., “VICh-infektsiya”, Informatsionnyi byulleten, 33, FNMTs SPID, M., 2009, 24 pp.

[8] Haberman S., “Actuarial review of models for describing and predicting the spread of HIV-infection and AIDS”, JIA, 1990, no. 117, 319–405

[9] Castillo-Chavez C., Mathematical and statistical approaches to AIDS epidemiology, Springer Verlag, 1989, 405 pp. | MR

[10] Longini M., Clark W. S., Byers R. H., Ward J. W., Darrow W. W., Lenp G. F., Hethcote H. W., “Statistical analysis of the stages of HIV infection using a Markov model”, Statistics in Medicine, 1989, no. 8, 831–843 | DOI

[11] Wilson D. P., Kahn J., Blower S. M., “Predicting the epidemiological impact of antiretroviral allocation strategies in Kwasulu–Natal: the effect of urban-rural divide”, PNAS, 103:38, 14228–14233 | DOI

[12] Hyman J. M., Li J., Stanley E. A., Sensitivity studies of the differential infectivity and stage progression models for the transmission of HIV, LA-UR-99-2253, 1999, 32 pp.

[13] Hsieh Y.-H., Cooke K., “Behaviour change and treatment of core group and bridge population: its effect on the spread of HIV/AIDS”, IMA J. Math. Appl. Med. Biol., 2000, no. 17, 213–241 | DOI

[14] Bacaer N., Pretorius C., Auvert B., “An age-structured model for the Potential Impact of Generalized Access to Antiretrovirals on the South African HIV Epidemic”, Bulletin of Mathematical Biology, 2010 | MR | Zbl

[15] Sloot P. M. A., Ivanov S. V., Boukhanovsky A. V., Van De Vijver D., Boucher C., “HIV Population Dynamics on Complex Networks”, European Conference on Complex Systems, 2007, 1–2

[16] Anderson R. M., Mei R. M., Infektsionnye bolezni cheloveka: dinamika i kontrol, Mir, M.; Nauchnyi mir, 2004, 784 pp.

[17] Avilov K. K., “Matematicheskoe modelirovanie protsessov rasprostraneniya tuberkuleza i vyyavleniya bolnykh”, Avtomatika i telemekhanika, 2007, no. 9, 145–160 | MR | Zbl

[18] A. E. Surinova (red.), Naselenie Rossii, Statisticheskii sbornik, 2009

[19] Svedeniya o bolnykh alkogolizmom, narkomaniyami, toksikomaniyami, Forma No 37 Federalnogo gosudarstvennogo statisticheskogo nablyudeniya